Horje
Vector Valued Functions Practice Problems

What are Vector Valued Functions?

A vector-valued function can be written as:

?(?)=⟨?1(?),?2(?),…,??(?)⟩r(t)=⟨f1​(t),f2​(t),…,fn​(t)⟩

where t is the input variable (often representing time) and ?1(?),?2(?),…,??(?)f1​(t),f2​(t),…,fn​(t) are the component functions, each of which is a real-valued function.

Examples on Vector-Valued Functions

  1. 2D Vector-Valued Function:

?(?)=⟨cos⁡(?),sin⁡(?)⟩r(t)=⟨cos(t),sin(t)⟩

This represents a parametric equation of a circle.

  1. 3D Vector-Valued Function:

?(?)=⟨?,?2,?3⟩r(t)=⟨t,t2,t3⟩

This represents a space curve in three dimensions.

Vector-valued functions are functions that assign vectors to each value of an independent variable. Mathematically, a vector-valued function can be defined as f(t) = ⟨f₁(t), f₂(t), …, fₙ(t)⟩, where t is the independent variable and f₁(t), f₂(t), …, fₙ(t) are scalar functions determining the components of the vector function at each value of t.

This function describes the trajectory of the particle in three-dimensional space as it moves along a helical path.

Magnitude of Vectors:

The magnitude (or length) of a vector ?=⟨?1,?2,…,??⟩v=⟨v1​,v2​,…,vn​⟩ in ?n-dimensional space is given by:

∣?∣=?12+?22+…+??2∣v∣=v12​+v22​+…+vn2​​

For example, for a vector ?=⟨3,4⟩v=⟨3,4⟩ in 2-dimensional space:

∣?∣=32+42=9+16=25=5∣v∣=32+42​=9+16​=25​=5

Unit Vector:

A unit vector is a vector with a magnitude of 1. It indicates direction but has no units of magnitude. To find a unit vector ?^v^ in the direction of a given vector ?v, divide the vector by its magnitude:

?^=?∣?∣v^=∣vv

For example, for ?=⟨3,4⟩v=⟨3,4⟩:

∣?∣=5∣v∣=5

?^=⟨3,4⟩5=⟨35,45⟩v^=5⟨3,4⟩​=⟨53​,54​⟩

Zero Vector:

The zero vector (denoted as 00) is a vector where all components are zero. In ?n-dimensional space, the zero vector is:

0=⟨0,0,…,0⟩0=⟨0,0,…,0⟩

The zero vector has a magnitude of 0 and does not have a specific direction.

Vector Operations:

  1. Addition: The sum of two vectors ?=⟨?1,?2,…,??⟩u=⟨u1​,u2​,…,un​⟩ and ?=⟨?1,?2,…,??⟩v=⟨v1​,v2​,…,vn​⟩ is:?+?=⟨?1+?1,?2+?2,…,??+??⟩u+v=⟨u1​+v1​,u2​+v2​,…,un​+vn​⟩
  2. Subtraction: The difference between two vectors ?u and ?v is:?−?=⟨?1−?1,?2−?2,…,??−??⟩uv=⟨u1​−v1​,u2​−v2​,…,un​−vn​⟩
  3. Scalar Multiplication: Multiplying a vector ?=⟨?1,?2,…,??⟩v=⟨v1​,v2​,…,vn​⟩ by a scalar ?c is:??=⟨??1,??2,…,???⟩cv=⟨cv1​,cv2​,…,cvn​⟩
  4. Dot Product: The dot product of two vectors ?=⟨?1,?2,…,??⟩u=⟨u1​,u2​,…,un​⟩ and ?=⟨?1,?2,…,??⟩v=⟨v1​,v2​,…,vn​⟩ is:?⋅?=?1?1+?2?2+…+????uv=u1​v1​+u2​v2​+…+unvn
  5. Cross Product: The cross product of two vectors in 3-dimensional space ?=⟨?1,?2,?3⟩u=⟨u1​,u2​,u3​⟩ and ?=⟨?1,?2,?3⟩v=⟨v1​,v2​,v3​⟩ is:?×?=⟨?2?3−?3?2,?3?1−?1?3,?1?2−?2?1⟩u×v=⟨u2​v3​−u3​v2​,u3​v1​−u1​v3​,u1​v2​−u2​v1​⟩

Vector Components:

A vector in ?n-dimensional space can be broken down into its components along each axis. For a vector ?=⟨?1,?2,…,??⟩v=⟨v1​,v2​,…,vn​⟩:

  • ?1v1​ is the component along the ?x-axis.
  • ?2v2​ is the component along the ?y-axis.
  • ??vn​ is the component along the ?n-th axis.

These components represent the projections of the vector onto the respective axes. The original vector is the sum of these component vectors.

Practice Problems on Vector Valued Functions

Practice Problem 1:

Let v = (2, -3, 5) and u = (-1, 4, 2). Compute:

a) The magnitude of v.

b) The unit vector in the direction of u.

c) The dot product of v and u.

d) The cross product of v and u.

Given:

?=(2,−3,5)v=(2,−3,5)?=(−1,4,2)u=(−1,4,2)

a) The magnitude of ?v:

The magnitude of a vector ?=(?1,?2,?3)v=(v1​,v2​,v3​) is given by:

∣?∣=?12+?22+?32∣v∣=v12​+v22​+v32​​

For ?=(2,−3,5)v=(2,−3,5):

∣?∣=22+(−3)2+52∣v∣=22+(−3)2+52​∣?∣=4+9+25∣v∣=4+9+25​∣?∣=38∣v∣=38​

So, the magnitude of ?v is 3838​.

b) The unit vector in the direction of ?u:

The unit vector ?^u^ in the direction of ?=(?1,?2,?3)u=(u1​,u2​,u3​) is given by:

?^=?∣?∣u^=∣uu

First, we find the magnitude of ?u:

∣?∣=(−1)2+42+22∣u∣=(−1)2+42+22​∣?∣=1+16+4∣u∣=1+16+4​∣?∣=21∣u∣=21​

Now, the unit vector ?^u^ is:

?^=121(−1,4,2)u^=21​1​(−1,4,2)?^=(−121,421,221)u^=(−21​1​,21​4​,21​2​)

So, the unit vector in the direction of ?u is (−121,421,221)(−21​1​,21​4​,21​2​).

c) The dot product of ?v and ?u:

The dot product of two vectors ?=(?1,?2,?3)v=(v1​,v2​,v3​) and ?=(?1,?2,?3)u=(u1​,u2​,u3​) is given by:

?⋅?=?1?1+?2?2+?3?3vu=v1​u1​+v2​u2​+v3​u3​

For ?=(2,−3,5)v=(2,−3,5) and ?=(−1,4,2)u=(−1,4,2):

?⋅?=2⋅(−1)+(−3)⋅4+5⋅2vu=2⋅(−1)+(−3)⋅4+5⋅2?⋅?=−2−12+10vu=−2−12+10?⋅?=−4vu=−4

So, the dot product of ?v and ?u is −4−4.

d) The cross product of ?v and ?u:

The cross product of two vectors ?=(?1,?2,?3)v=(v1​,v2​,v3​) and ?=(?1,?2,?3)u=(u1​,u2​,u3​) is given by:

?×?=(?2?3−?3?2,?3?1−?1?3,?1?2−?2?1)v×u=(v2​u3​−v3​u2​,v3​u1​−v1​u3​,v1​u2​−v2​u1​)

For ?=(2,−3,5)v=(2,−3,5) and ?=(−1,4,2)u=(−1,4,2):

?×?=((−3)⋅2−5⋅4,5⋅(−1)−2⋅2,2⋅4−(−3)⋅(−1))v×u=((−3)⋅2−5⋅4,5⋅(−1)−2⋅2,2⋅4−(−3)⋅(−1))?×?=(−6−20,−5−4,8−3)v×u=(−6−20,−5−4,8−3)?×?=(−26,−9,5)v×u=(−26,−9,5)

So, the cross product of ?v and ?u is (−26,−9,5)(−26,−9,5).

Practice Problem 2:

Find the angle between the vectors v = (3, -4) and u = (5, 2).

Given:

?=(3,−4)v=(3,−4)?=(5,2)u=(5,2)

Step 1: Compute the dot product ?⋅?vu:

?⋅?=3⋅5+(−4)⋅2vu=3⋅5+(−4)⋅2?⋅?=15−8vu=15−8?⋅?=7vu=7

Step 2: Compute the magnitudes of ?v and ?u:

For ?=(3,−4)v=(3,−4):

∣?∣=32+(−4)2∣v∣=32+(−4)2​∣?∣=9+16∣v∣=9+16​∣?∣=25∣v∣=25​∣?∣=5∣v∣=5

For ?=(5,2)u=(5,2):

∣?∣=52+22∣u∣=52+22​∣?∣=25+4∣u∣=25+4​∣?∣=29∣u∣=29​

Step 3: Compute cos⁡(?)cos(θ):

cos⁡(?)=?⋅?∣?∣∣?∣cos(θ)=∣v∣∣uvu​cos⁡(?)=75⋅29cos(θ)=5⋅29​7​cos⁡(?)=7529cos(θ)=529​7​

Step 4: Compute ?θ:

?=cos⁡−1(7529)θ=cos−1(529​7​)

To get the exact angle, we can use a calculator:

?≈cos⁡−1(7529)θ≈cos−1(529​7​)?≈cos⁡−1(726.870)θ≈cos−1(26.8707​)?≈cos⁡−1(0.2606)θ≈cos−1(0.2606)?≈75.15∘θ≈75.15∘

So, the angle between the vectors ?v and ?u is approximately 75.15∘75.15∘

Practice Problem 3:

Let v = (-1, 3, -2) and u = (4, -2, 1). Compute:

a) The magnitude of u.

b) The unit vector in the direction of v.

c) The dot product of v and u.

d) The angle between v and u.

Given:

?=(−1,3,−2)v=(−1,3,−2)?=(4,−2,1)u=(4,−2,1)

a) The magnitude of ?u:

The magnitude of a vector ?=(?1,?2,?3)u=(u1​,u2​,u3​) is given by:

∣?∣=?12+?22+?32∣u∣=u12​+u22​+u32​​

For ?=(4,−2,1)u=(4,−2,1):

∣?∣=42+(−2)2+12∣u∣=42+(−2)2+12​∣?∣=16+4+1∣u∣=16+4+1​∣?∣=21∣u∣=21​

So, the magnitude of ?u is 2121​.

b) The unit vector in the direction of ?v:

The unit vector ?^v^ in the direction of ?=(?1,?2,?3)v=(v1​,v2​,v3​) is given by:

?^=?∣?∣v^=∣vv

First, we find the magnitude of ?v:

∣?∣=(−1)2+32+(−2)2∣v∣=(−1)2+32+(−2)2​∣?∣=1+9+4∣v∣=1+9+4​∣?∣=14∣v∣=14​

Now, the unit vector ?^v^ is:

?^=114(−1,3,−2)v^=14​1​(−1,3,−2)?^=(−114,314,−214)v^=(−14​1​,14​3​,−14​2​)

So, the unit vector in the direction of ?v is (−114,314,−214)(−14​1​,14​3​,−14​2​).

c) The dot product of ?v and ?u:

The dot product of two vectors ?=(?1,?2,?3)v=(v1​,v2​,v3​) and ?=(?1,?2,?3)u=(u1​,u2​,u3​) is given by:

?⋅?=?1?1+?2?2+?3?3vu=v1​u1​+v2​u2​+v3​u3​

For ?=(−1,3,−2)v=(−1,3,−2) and ?=(4,−2,1)u=(4,−2,1):

?⋅?=(−1)⋅4+3⋅(−2)+(−2)⋅1vu=(−1)⋅4+3⋅(−2)+(−2)⋅1?⋅?=−4−6−2vu=−4−6−2?⋅?=−12vu=−12

So, the dot product of ?v and ?u is −12−12.

d) The angle between ?v and ?u:

The angle ?θ between two vectors ?v and ?u can be found using the dot product formula:

cos⁡(?)=?⋅?∣?∣∣?∣cos(θ)=∣v∣∣uvu

We already have: ?⋅?=−12vu=−12∣?∣=14∣v∣=14​∣?∣=21∣u∣=21​

Now, calculate cos⁡(?)cos(θ):

cos⁡(?)=−1214⋅21cos(θ)=14​⋅21​−12​cos⁡(?)=−12294cos(θ)=294​−12​cos⁡(?)=−12294≈−0.6987cos(θ)=294​−12​≈−0.6987

Now, find ?θ using the inverse cosine function:

?=cos⁡−1(−0.6987)θ=cos−1(−0.6987)

Using a calculator:

?≈134.43∘θ≈134.43∘

So, the angle between the vectors ?v and ?u is approximately 134.43∘134.43∘

Practice Problem 4:

Find the cross product of the vectors v = (2, 1, -3) and u = (-1, 4, 2).

Given: ?=(2,1,−3)v=(2,1,−3)?=(−1,4,2)u=(−1,4,2)

Compute each component of the cross product:

  1. First component: ?2?3−?3?2=1⋅2−(−3)⋅4v2​u3​−v3​u2​=1⋅2−(−3)⋅4=2+12=2+12=14=14
  2. Second component: ?3?1−?1?3=(−3)⋅(−1)−2⋅2v3​u1​−v1​u3​=(−3)⋅(−1)−2⋅2=3−4=3−4=−1=−1
  3. Third component: ?1?2−?2?1=2⋅4−1⋅(−1)v1​u2​−v2​u1​=2⋅4−1⋅(−1)=8+1=8+1=9=9

Therefore, the cross product ?×?v×u is:

?×?=(14,−1,9)v×u=(14,−1,9)

So, the cross product of the vectors ?=(2,1,−3)v=(2,1,−3) and ?=(−1,4,2)u=(−1,4,2) is (14,−1,9)(14,−1,9).

Practice Problem 5:

Find a vector that is perpendicular to both v = (3, 1, -2) and u = (2, -1, 4).

Given: ?=(3,1,−2)v=(3,1,−2)?=(2,−1,4)u=(2,−1,4)

The cross product ?×?v×u is calculated as follows:

?×?=(?2?3−?3?2,?3?1−?1?3,?1?2−?2?1)v×u=(v2​u3​−v3​u2​,v3​u1​−v1​u3​,v1​u2​−v2​u1​)

Let’s compute each component:

  1. First component: ?2?3−?3?2=1⋅4−(−2)⋅(−1)v2​u3​−v3​u2​=1⋅4−(−2)⋅(−1)=4−2=4−2=2=2
  2. Second component: ?3?1−?1?3=(−2)⋅2−3⋅4v3​u1​−v1​u3​=(−2)⋅2−3⋅4=−4−12=−4−12=−16=−16
  3. Third component: ?1?2−?2?1=3⋅(−1)−1⋅2v1​u2​−v2​u1​=3⋅(−1)−1⋅2=−3−2=−3−2=−5=−5

Therefore, the cross product ?×?v×u is:

?×?=(2,−16,−5)v×u=(2,−16,−5)

So, the vector (2,−16,−5)(2,−16,−5) is perpendicular to both ?=(3,1,−2)v=(3,1,−2) and ?=(2,−1,4)u=(2,−1,4).




Reffered: https://www.geeksforgeeks.org


Mathematics

Related
Line Integrals Practice Questions Line Integrals Practice Questions
Hyperbolic Functions Practice Problems with Solution Hyperbolic Functions Practice Problems with Solution
Scalar Triple Product Practice Problems Scalar Triple Product Practice Problems
How to Teach Ascending Order or Descending Order How to Teach Ascending Order or Descending Order
Surface Integrals Practice Problems with Solutions Surface Integrals Practice Problems with Solutions

Type:
Geek
Category:
Coding
Sub Category:
Tutorial
Uploaded by:
Admin
Views:
14