What are Vector Valued Functions?
A vector-valued function can be written as:
?(?)=⟨?1(?),?2(?),…,??(?)⟩r(t)=⟨f1(t),f2(t),…,fn(t)⟩
where t is the input variable (often representing time) and ?1(?),?2(?),…,??(?)f1(t),f2(t),…,fn(t) are the component functions, each of which is a real-valued function.
Examples on Vector-Valued Functions
- 2D Vector-Valued Function:
?(?)=⟨cos(?),sin(?)⟩r(t)=⟨cos(t),sin(t)⟩
This represents a parametric equation of a circle.
- 3D Vector-Valued Function:
?(?)=⟨?,?2,?3⟩r(t)=⟨t,t2,t3⟩
This represents a space curve in three dimensions.
Vector-valued functions are functions that assign vectors to each value of an independent variable. Mathematically, a vector-valued function can be defined as f(t) = ⟨f₁(t), f₂(t), …, fₙ(t)⟩, where t is the independent variable and f₁(t), f₂(t), …, fₙ(t) are scalar functions determining the components of the vector function at each value of t.
This function describes the trajectory of the particle in three-dimensional space as it moves along a helical path.
Magnitude of Vectors:
The magnitude (or length) of a vector ?=⟨?1,?2,…,??⟩v=⟨v1,v2,…,vn⟩ in ?n-dimensional space is given by:
∣?∣=?12+?22+…+??2∣v∣=v12+v22+…+vn2
For example, for a vector ?=⟨3,4⟩v=⟨3,4⟩ in 2-dimensional space:
∣?∣=32+42=9+16=25=5∣v∣=32+42=9+16=25=5
Unit Vector:
A unit vector is a vector with a magnitude of 1. It indicates direction but has no units of magnitude. To find a unit vector ?^v^ in the direction of a given vector ?v, divide the vector by its magnitude:
?^=?∣?∣v^=∣v∣v
For example, for ?=⟨3,4⟩v=⟨3,4⟩:
∣?∣=5∣v∣=5
?^=⟨3,4⟩5=⟨35,45⟩v^=5⟨3,4⟩=⟨53,54⟩
Zero Vector:
The zero vector (denoted as 00) is a vector where all components are zero. In ?n-dimensional space, the zero vector is:
0=⟨0,0,…,0⟩0=⟨0,0,…,0⟩
The zero vector has a magnitude of 0 and does not have a specific direction.
Vector Operations:
- Addition: The sum of two vectors ?=⟨?1,?2,…,??⟩u=⟨u1,u2,…,un⟩ and ?=⟨?1,?2,…,??⟩v=⟨v1,v2,…,vn⟩ is:?+?=⟨?1+?1,?2+?2,…,??+??⟩u+v=⟨u1+v1,u2+v2,…,un+vn⟩
- Subtraction: The difference between two vectors ?u and ?v is:?−?=⟨?1−?1,?2−?2,…,??−??⟩u−v=⟨u1−v1,u2−v2,…,un−vn⟩
- Scalar Multiplication: Multiplying a vector ?=⟨?1,?2,…,??⟩v=⟨v1,v2,…,vn⟩ by a scalar ?c is:??=⟨??1,??2,…,???⟩cv=⟨cv1,cv2,…,cvn⟩
- Dot Product: The dot product of two vectors ?=⟨?1,?2,…,??⟩u=⟨u1,u2,…,un⟩ and ?=⟨?1,?2,…,??⟩v=⟨v1,v2,…,vn⟩ is:?⋅?=?1?1+?2?2+…+????u⋅v=u1v1+u2v2+…+unvn
- Cross Product: The cross product of two vectors in 3-dimensional space ?=⟨?1,?2,?3⟩u=⟨u1,u2,u3⟩ and ?=⟨?1,?2,?3⟩v=⟨v1,v2,v3⟩ is:?×?=⟨?2?3−?3?2,?3?1−?1?3,?1?2−?2?1⟩u×v=⟨u2v3−u3v2,u3v1−u1v3,u1v2−u2v1⟩
Vector Components:
A vector in ?n-dimensional space can be broken down into its components along each axis. For a vector ?=⟨?1,?2,…,??⟩v=⟨v1,v2,…,vn⟩:
- ?1v1 is the component along the ?x-axis.
- ?2v2 is the component along the ?y-axis.
- ??vn is the component along the ?n-th axis.
These components represent the projections of the vector onto the respective axes. The original vector is the sum of these component vectors.
Practice Problems on Vector Valued Functions
Practice Problem 1:
Let v = (2, -3, 5) and u = (-1, 4, 2). Compute:
a) The magnitude of v.
b) The unit vector in the direction of u.
c) The dot product of v and u.
d) The cross product of v and u.
Given:
?=(2,−3,5)v=(2,−3,5)?=(−1,4,2)u=(−1,4,2)
a) The magnitude of ?v:
The magnitude of a vector ?=(?1,?2,?3)v=(v1,v2,v3) is given by:
∣?∣=?12+?22+?32∣v∣=v12+v22+v32
For ?=(2,−3,5)v=(2,−3,5):
∣?∣=22+(−3)2+52∣v∣=22+(−3)2+52∣?∣=4+9+25∣v∣=4+9+25∣?∣=38∣v∣=38
So, the magnitude of ?v is 3838.
b) The unit vector in the direction of ?u:
The unit vector ?^u^ in the direction of ?=(?1,?2,?3)u=(u1,u2,u3) is given by:
?^=?∣?∣u^=∣u∣u
First, we find the magnitude of ?u:
∣?∣=(−1)2+42+22∣u∣=(−1)2+42+22∣?∣=1+16+4∣u∣=1+16+4∣?∣=21∣u∣=21
Now, the unit vector ?^u^ is:
?^=121(−1,4,2)u^=211(−1,4,2)?^=(−121,421,221)u^=(−211,214,212)
So, the unit vector in the direction of ?u is (−121,421,221)(−211,214,212).
c) The dot product of ?v and ?u:
The dot product of two vectors ?=(?1,?2,?3)v=(v1,v2,v3) and ?=(?1,?2,?3)u=(u1,u2,u3) is given by:
?⋅?=?1?1+?2?2+?3?3v⋅u=v1u1+v2u2+v3u3
For ?=(2,−3,5)v=(2,−3,5) and ?=(−1,4,2)u=(−1,4,2):
?⋅?=2⋅(−1)+(−3)⋅4+5⋅2v⋅u=2⋅(−1)+(−3)⋅4+5⋅2?⋅?=−2−12+10v⋅u=−2−12+10?⋅?=−4v⋅u=−4
So, the dot product of ?v and ?u is −4−4.
d) The cross product of ?v and ?u:
The cross product of two vectors ?=(?1,?2,?3)v=(v1,v2,v3) and ?=(?1,?2,?3)u=(u1,u2,u3) is given by:
?×?=(?2?3−?3?2,?3?1−?1?3,?1?2−?2?1)v×u=(v2u3−v3u2,v3u1−v1u3,v1u2−v2u1)
For ?=(2,−3,5)v=(2,−3,5) and ?=(−1,4,2)u=(−1,4,2):
?×?=((−3)⋅2−5⋅4,5⋅(−1)−2⋅2,2⋅4−(−3)⋅(−1))v×u=((−3)⋅2−5⋅4,5⋅(−1)−2⋅2,2⋅4−(−3)⋅(−1))?×?=(−6−20,−5−4,8−3)v×u=(−6−20,−5−4,8−3)?×?=(−26,−9,5)v×u=(−26,−9,5)
So, the cross product of ?v and ?u is (−26,−9,5)(−26,−9,5).
Practice Problem 2:
Find the angle between the vectors v = (3, -4) and u = (5, 2).
Given:
?=(3,−4)v=(3,−4)?=(5,2)u=(5,2)
Step 1: Compute the dot product ?⋅?v⋅u:
?⋅?=3⋅5+(−4)⋅2v⋅u=3⋅5+(−4)⋅2?⋅?=15−8v⋅u=15−8?⋅?=7v⋅u=7
Step 2: Compute the magnitudes of ?v and ?u:
For ?=(3,−4)v=(3,−4):
∣?∣=32+(−4)2∣v∣=32+(−4)2∣?∣=9+16∣v∣=9+16∣?∣=25∣v∣=25∣?∣=5∣v∣=5
For ?=(5,2)u=(5,2):
∣?∣=52+22∣u∣=52+22∣?∣=25+4∣u∣=25+4∣?∣=29∣u∣=29
Step 3: Compute cos(?)cos(θ):
cos(?)=?⋅?∣?∣∣?∣cos(θ)=∣v∣∣u∣v⋅ucos(?)=75⋅29cos(θ)=5⋅297cos(?)=7529cos(θ)=5297
Step 4: Compute ?θ:
?=cos−1(7529)θ=cos−1(5297)
To get the exact angle, we can use a calculator:
?≈cos−1(7529)θ≈cos−1(5297)?≈cos−1(726.870)θ≈cos−1(26.8707)?≈cos−1(0.2606)θ≈cos−1(0.2606)?≈75.15∘θ≈75.15∘
So, the angle between the vectors ?v and ?u is approximately 75.15∘75.15∘
Practice Problem 3:
Let v = (-1, 3, -2) and u = (4, -2, 1). Compute:
a) The magnitude of u.
b) The unit vector in the direction of v.
c) The dot product of v and u.
d) The angle between v and u.
Given:
?=(−1,3,−2)v=(−1,3,−2)?=(4,−2,1)u=(4,−2,1)
a) The magnitude of ?u:
The magnitude of a vector ?=(?1,?2,?3)u=(u1,u2,u3) is given by:
∣?∣=?12+?22+?32∣u∣=u12+u22+u32
For ?=(4,−2,1)u=(4,−2,1):
∣?∣=42+(−2)2+12∣u∣=42+(−2)2+12∣?∣=16+4+1∣u∣=16+4+1∣?∣=21∣u∣=21
So, the magnitude of ?u is 2121.
b) The unit vector in the direction of ?v:
The unit vector ?^v^ in the direction of ?=(?1,?2,?3)v=(v1,v2,v3) is given by:
?^=?∣?∣v^=∣v∣v
First, we find the magnitude of ?v:
∣?∣=(−1)2+32+(−2)2∣v∣=(−1)2+32+(−2)2∣?∣=1+9+4∣v∣=1+9+4∣?∣=14∣v∣=14
Now, the unit vector ?^v^ is:
?^=114(−1,3,−2)v^=141(−1,3,−2)?^=(−114,314,−214)v^=(−141,143,−142)
So, the unit vector in the direction of ?v is (−114,314,−214)(−141,143,−142).
c) The dot product of ?v and ?u:
The dot product of two vectors ?=(?1,?2,?3)v=(v1,v2,v3) and ?=(?1,?2,?3)u=(u1,u2,u3) is given by:
?⋅?=?1?1+?2?2+?3?3v⋅u=v1u1+v2u2+v3u3
For ?=(−1,3,−2)v=(−1,3,−2) and ?=(4,−2,1)u=(4,−2,1):
?⋅?=(−1)⋅4+3⋅(−2)+(−2)⋅1v⋅u=(−1)⋅4+3⋅(−2)+(−2)⋅1?⋅?=−4−6−2v⋅u=−4−6−2?⋅?=−12v⋅u=−12
So, the dot product of ?v and ?u is −12−12.
d) The angle between ?v and ?u:
The angle ?θ between two vectors ?v and ?u can be found using the dot product formula:
cos(?)=?⋅?∣?∣∣?∣cos(θ)=∣v∣∣u∣v⋅u
We already have: ?⋅?=−12v⋅u=−12∣?∣=14∣v∣=14∣?∣=21∣u∣=21
Now, calculate cos(?)cos(θ):
cos(?)=−1214⋅21cos(θ)=14⋅21−12cos(?)=−12294cos(θ)=294−12cos(?)=−12294≈−0.6987cos(θ)=294−12≈−0.6987
Now, find ?θ using the inverse cosine function:
?=cos−1(−0.6987)θ=cos−1(−0.6987)
Using a calculator:
?≈134.43∘θ≈134.43∘
So, the angle between the vectors ?v and ?u is approximately 134.43∘134.43∘
Practice Problem 4:
Find the cross product of the vectors v = (2, 1, -3) and u = (-1, 4, 2).
Given: ?=(2,1,−3)v=(2,1,−3)?=(−1,4,2)u=(−1,4,2)
Compute each component of the cross product:
- First component: ?2?3−?3?2=1⋅2−(−3)⋅4v2u3−v3u2=1⋅2−(−3)⋅4=2+12=2+12=14=14
- Second component: ?3?1−?1?3=(−3)⋅(−1)−2⋅2v3u1−v1u3=(−3)⋅(−1)−2⋅2=3−4=3−4=−1=−1
- Third component: ?1?2−?2?1=2⋅4−1⋅(−1)v1u2−v2u1=2⋅4−1⋅(−1)=8+1=8+1=9=9
Therefore, the cross product ?×?v×u is:
?×?=(14,−1,9)v×u=(14,−1,9)
So, the cross product of the vectors ?=(2,1,−3)v=(2,1,−3) and ?=(−1,4,2)u=(−1,4,2) is (14,−1,9)(14,−1,9).
Practice Problem 5:
Find a vector that is perpendicular to both v = (3, 1, -2) and u = (2, -1, 4).
Given: ?=(3,1,−2)v=(3,1,−2)?=(2,−1,4)u=(2,−1,4)
The cross product ?×?v×u is calculated as follows:
?×?=(?2?3−?3?2,?3?1−?1?3,?1?2−?2?1)v×u=(v2u3−v3u2,v3u1−v1u3,v1u2−v2u1)
Let’s compute each component:
- First component: ?2?3−?3?2=1⋅4−(−2)⋅(−1)v2u3−v3u2=1⋅4−(−2)⋅(−1)=4−2=4−2=2=2
- Second component: ?3?1−?1?3=(−2)⋅2−3⋅4v3u1−v1u3=(−2)⋅2−3⋅4=−4−12=−4−12=−16=−16
- Third component: ?1?2−?2?1=3⋅(−1)−1⋅2v1u2−v2u1=3⋅(−1)−1⋅2=−3−2=−3−2=−5=−5
Therefore, the cross product ?×?v×u is:
?×?=(2,−16,−5)v×u=(2,−16,−5)
So, the vector (2,−16,−5)(2,−16,−5) is perpendicular to both ?=(3,1,−2)v=(3,1,−2) and ?=(2,−1,4)u=(2,−1,4).
|