![]() |
When we run multiple regression models in R, you might end up with a list of regression outputs that you want to consolidate into a single data frame for easier analysis and comparison. This can be particularly useful when performing batch regression analysis across multiple datasets or different subsets of a single dataset. This article provides a comprehensive guide on how to convert a list of regression outputs into data frames in R. What are Regression Outputs?Regression outputs are the results obtained from fitting a regression model to data. They provide insight into the relationship between independent variables (predictors) and the dependent variable (response). Now we will discuss Step-by-Step How to Convert a List of Regression Outputs into Data Frames in the R Programming Language. Step 1: Run Multiple Regression Models and Store Outputs in a ListFirst, let’s run several regression models and store their outputs in a list.
Output:
[[1]]
Call:
lm(formula = y1 ~ x1 + x2, data = data)
Coefficients:
(Intercept) x1 x2
0.10779 -0.04201 -0.17865
[[2]]
Call:
lm(formula = y2 ~ x1 + x2, data = data)
Coefficients:
(Intercept) x1 x2
-0.09272 0.03848 -0.12689
[[3]]
Call:
lm(formula = y3 ~ x1 + x2, data = data)
Coefficients:
(Intercept) x1 x2
0.12158 -0.04148 -0.02470 Step 2: Extract Regression SummariesNext, we need to extract the summary statistics (e.g., coefficients, standard errors, p-values) from each model and store them in a list.
Output: [[1]]
Call:
lm(formula = y1 ~ x1 + x2, data = data)
Residuals:
Min 1Q Median 3Q Max
-2.53661 -0.64238 -0.03869 0.53731 2.12391
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.10779 0.09095 1.185 0.2388
x1 -0.04201 0.08746 -0.480 0.6321
x2 -0.17865 0.09183 -1.945 0.0546 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.9038 on 97 degrees of freedom
Multiple R-squared: 0.03942, Adjusted R-squared: 0.01962
F-statistic: 1.99 on 2 and 97 DF, p-value: 0.1422
[[2]]
Call:
lm(formula = y2 ~ x1 + x2, data = data)
Residuals:
Min 1Q Median 3Q Max
-1.9726 -0.6999 -0.0814 0.6153 3.2448
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.09272 0.09738 -0.952 0.343
x1 0.03848 0.09364 0.411 0.682
x2 -0.12689 0.09832 -1.291 0.200
Residual standard error: 0.9677 on 97 degrees of freedom
Multiple R-squared: 0.01877, Adjusted R-squared: -0.001462
F-statistic: 0.9278 on 2 and 97 DF, p-value: 0.3989
[[3]]
Call:
lm(formula = y3 ~ x1 + x2, data = data)
Residuals:
Min 1Q Median 3Q Max
-1.87474 -0.64772 -0.06787 0.66962 2.17843
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.12158 0.09644 1.261 0.210
x1 -0.04148 0.09274 -0.447 0.656
x2 -0.02470 0.09737 -0.254 0.800
Residual standard error: 0.9583 on 97 degrees of freedom
Multiple R-squared: 0.002674, Adjusted R-squared: -0.01789
F-statistic: 0.1301 on 2 and 97 DF, p-value: 0.8782 Step 3: Convert Summaries to Data FramesWe’ll create a function to extract the desired summary statistics and convert each summary into a data frame.
Output: [[1]]
term estimate std.error statistic p.value
(Intercept) (Intercept) 0.10779481 0.09095172 1.1851871 0.23883900
x1 x1 -0.04201096 0.08746213 -0.4803332 0.63207201
x2 x2 -0.17865367 0.09183242 -1.9454314 0.05461809
[[2]]
term estimate std.error statistic p.value
(Intercept) (Intercept) -0.09272146 0.09737947 -0.9521664 0.3433792
x1 x1 0.03847563 0.09364325 0.4108745 0.6820708
x2 x2 -0.12689206 0.09832240 -1.2905713 0.1999201
[[3]]
term estimate std.error statistic p.value
(Intercept) (Intercept) 0.12157671 0.09643802 1.2606720 0.2104511
x1 x1 -0.04147896 0.09273793 -0.4472707 0.6556768
x2 x2 -0.02469593 0.09737184 -0.2536250 0.8003221 Step 4: Combine Data Frames into a Single Data FrameFinally, we can combine the individual data frames into a single data frame for easier comparison.
Output: term estimate std.error statistic p.value model
(Intercept) (Intercept) 0.10779481 0.09095172 1.1851871 0.23883900 Model_1
x1 x1 -0.04201096 0.08746213 -0.4803332 0.63207201 Model_1
x2 x2 -0.17865367 0.09183242 -1.9454314 0.05461809 Model_1
(Intercept)1 (Intercept) -0.09272146 0.09737947 -0.9521664 0.34337924 Model_2
x11 x1 0.03847563 0.09364325 0.4108745 0.68207080 Model_2
x21 x2 -0.12689206 0.09832240 -1.2905713 0.19992015 Model_2
(Intercept)2 (Intercept) 0.12157671 0.09643802 1.2606720 0.21045106 Model_3
x12 x1 -0.04147896 0.09273793 -0.4472707 0.65567678 Model_3
x22 x2 -0.02469593 0.09737184 -0.2536250 0.80032211 Model_3
ConclusionConverting a list of regression outputs into data frames in R is a valuable technique for summarizing and comparing multiple models. By following the steps outlined in this guide, you can efficiently extract and consolidate regression results, facilitating further analysis and interpretation. This approach is particularly useful in large-scale regression analysis, meta-analysis, and automated reporting workflows. |
Reffered: https://www.geeksforgeeks.org
AI ML DS |
Type: | Geek |
Category: | Coding |
Sub Category: | Tutorial |
Uploaded by: | Admin |
Views: | 15 |