![]() |
In the Mathematical algorithm there are two fundamental mathematical algorithms that is prime factorization and finding divisors. Prime factorization is the process of breaking down a number into its prime factors, while finding divisors involves identifying all the numbers that can evenly divide the original number. These concepts are very important in various mathematical and computer science applications, from number theory to cryptography. In this article we will look into these algorithms with some practice problem. Divisors:Divisors are the numbers that divide evenly into a given number without leaving a remainder. For example, the divisors of 12 are: 1, 2, 3, 4, 6, and 12. These are all the numbers that can divide 12 with no remainder left over. Finding the divisors of a number is an important mathematical operation. It has applications in number theory, computer science algorithms, and more. Some key things to know about divisors:
Prime Factorization:Prime factorization is the process of breaking down a number into its prime factors. A prime number is a positive integer greater than 1 that is only divisible by 1 and itself. The prime factorization of a number involves finding which prime numbers, when multiplied together, equal that original number. For example, the prime factorization of 24 is 2 x 2 x 2 x 3. This is because the prime numbers that, when multiplied together, equal 24 are 2, 2, 2, and 3. Some key points about prime factorization:
Mathematically, any number N can be expressed as:
Finding these primes for any number N is called prime factorization. Easy Problems on Prime Factorization and Divisors:
Medium Problems on Prime Factorization and Divisors:
Hard Problems on Prime Factorization and Divisors:
|
Reffered: https://www.geeksforgeeks.org
DSA |
Type: | Geek |
Category: | Coding |
Sub Category: | Tutorial |
Uploaded by: | Admin |
Views: | 14 |