Question 1: Find the common factors of the given terms. (i) 12x, 36 (ii) 2y, 22xy (iii) 14pq, 28p2q2 (iv) 2x, 3x2, 4 (v) 6abc, 24ab2, 12a2b (vi) 16x3, -4x2, 32x (vii) 10pq, 20qr, 30rp (viii) 3x2y3, 10x3y2, 6x2y2z
Solution:
(i)12x, 36
Factors of 12x and 36 are ⇒ 12x = 2 × 2 × 2 × 3 × x ⇒ 36 = 2 × 2 × 3 × 3 So, common factors are ⇒ 2 × 2 × 3 × 3 = 12
(ii) 2y, 22xy
Factors of 2y, 22xy ⇒ 2y = 2 × y ⇒ 22xy = 2 × 11 × x × y So, common factors are ⇒ 2 × y = 2y
(iii) 14pq, 28p2q2
Factors of 14pq, 28p2q2 ⇒ 14pq = 2 × 7 × p × q ⇒ 28p2q2 = 2 × 2 × 7 × p × p × q × q So, common factors are ⇒ 2 × 7 × p × q = 14pq
(iv) 2x, 3x2, 4
Factors of 2x, 3x2, 4 ⇒ 2x = 2 × x ⇒ 3x2 = 3 × x × x ⇒ 4 = 2 × 2 So, common factor is 1 (∵ 1 is a factor of every number)
(v) 6abc, 24ab2, 12a2b
Factors of 6abc, 24ab2, 12a2b ⇒ 6abc = 2 × 3 × a × b × c ⇒ 24ab2 = 2 × 2 × 2 × 3 × a × b × b ⇒ 12a2b = 2 × 2 × 3 × a × a × b So, common factors are ⇒ 2 × 3 × a × b = 6ab
(vi) 16x3, -4x2, 32x
Factors of 16x3, -4x2, 32x ⇒ 16x3 = 2 × 2 × 2 × 2 × x × x × x ⇒ -4x2 = -1 × 2 × 2 × x × x ⇒ 32x = 2 × 2 × 2 × 2 × 2 So, common factors are ⇒ 2 × 2 × x = 4x
(vii) 10pq, 20qr, 30rp
Factors of 10pq, 20qr, 30rp ⇒ 10pq = 2 × 5 × p × q + ⇒ 20qr = 2 × 2 × 5 × q × r ⇒ 30rp = 2 × 3 × 5 × r × p So, common factors are ⇒ 2 × 5 = 10
(viii) 3x2y3, 10x3y2, 6x2y2z
Factors of 3x2y3, 10x3y2, 6x2y2z ⇒ 3x2y3 = 3 × x × x × y × y × y ⇒ 10x3y2 = 2 × 5 × x × x × x × y × y ⇒ 6x2y2z = 2 × 3 × x × x × y × y So, common factors are ⇒ x × x × y × y = x2y2
Question 2: Factorise the following expressions. (i) 7x − 42 (ii) 6p − 12q (iii) 7a2 + 14a (iv) −16z + 20z3 (v) 20l2m + 30alm (vi) 5x2y −15xy2 (vii) 10a2 − 15b2 + 20c2 (viii) −4a2 + 4ab − 4ca (ix) x2yz + xy2z + xyz2 (x) ax2y + bxy2 + cxyz
Solution:
(i) 7x − 42
⇒ 7x = 7 × x ⇒ 42 = 2× 3 × 7 So, common factor is 7 Therefore, 7x − 42 = 7(x − 6)
(ii) 6p − 12q
⇒ 6p = 2 × 3 × p ⇒ 12q = 2 × 2 × 3 × q So, common factors are 2 × 3 Therefore, 6p − 12q = 2 × 3[p − (2 × q)] ⇒ 6(p − 2q)
(iii) 7a2 + 14a
⇒ 7a2 = 7 × a × a ⇒ 14a = 2 × 7 × a So, common factors are 7 × a Therefore, 7a2 + 14a = 7 × a(a + 2) ⇒ 7a(a + 2)
(iv) −16z + 20z3
⇒ 16z = 2 × 2 × 2 × 2 × z ⇒ 20z2 = 2 × 2 × 5 × z × z × z So, common factors are 2 × 2 × z Therefore, −16z + 20z3 = −(2 × 2 × 2 × 2 × z) + (2 × 2 × 5 × z × z × z) ⇒ 2 × 2 × z[−(2 × 2) + (5 × z × z) ⇒ 4z(−4 + 5z2)
(v) 20l2m + 30alm
⇒ 20l2m = 2 × 2 × 5 × l × l × m ⇒ 30alm = 2 × 3 × 5 × a × l × m So, common factors are 2 × 5 × l × m Therefore, 20l2m + 30alm = 2 × 5 × l × m[(2 × l) + (3 × a)] ⇒ 10lm(2l + 3a)
(vi) 5x2y − 15xy2
⇒ 5x2y = 5×x×x×y ⇒ 15xy2 = 3×5×x×y×y So, common factors are 5×x×y Therefore, 5x2y − 15xy2 = 5×x×y[(x) − (3×y)] ⇒ 5xy(x − 3y)
(vii) 10a2 − 15b2 + 20c2
⇒ 10a2 = 2×5×a×a ⇒ 15b2 = 3×5×b×b ⇒ 20c2 = 2×2×5×c×c So, common factor is 5 Therefore, 10a2 − 15b2 +20c2 = 5[(2×a×a) − (3×b×b) + (2×2×c×c)] ⇒ 5(2a2 − 3b2 + 4c2)
(viii) −4a2 + 4ab − 4ca
⇒ 4a2 = 2×2×a×a ⇒ 4ab = 2×2×a×b ⇒ 4ca = 2×2×c×a So, common factors are 2×2×a = 4a Therefore, −4a2 + 4ab − 4ca = 4a(−a + b − c)
(ix) x2yz + xy2z + xyz2
⇒ x2yz = x×x×y×z ⇒ xy2z = x×y×y×z ⇒ xyz2 = x×y×z×z So, common factors are x×y×z = xyz Therefore, x2yz + xy2z + xyz2 = xyz(x +y + z)
(x) ax2y + bxy2 + cxyz
⇒ ax2y = a×x×x×y ⇒ bxy2 = b×x×y×y ⇒ cxyz = c×x×y×z So, common factors are x×y = xy Therefore, ax2y + bxy2 + cxyz = xy(ax +by +cz)
Question 3: Factorise. (i) x2 + xy + 8x + 8y (ii) 15xy − 6x + 5y − 2 (iii) ax + bx − ay − by (iv) 15pq + 15 + 9q + 25p (v) z − 7 + 7xy − xyz
Solution:
(i) x2 + xy + 8x + 8y
⇒ x×x + x×y + 8×x + 8×y Assembling the terms, ⇒ x(x + y) + 8(x + y) Therefore, the factors are ⇒ (x + y)(x + 8)
(ii) 15xy − 6x + 5y − 2
⇒ 3×5×x×y − 2×3×x + 5×y − 2 Assembling the terms ⇒ 3x(5y − 2) + 1(5y − 2) Therefore, the factors are ⇒ (5y − 2)(3x + 1)
(iii) ax + bx − ay − by
⇒ a×x + b×x − a×y − b×y Assembling the terms ⇒ x(a + b) − y(a + b) Therefore, the factors are ⇒ (a + b)(x − y)
(iv) 15pq + 15 + 9q + 25p
⇒ 3×5×p×q + 3×5 + 3×3×q + 5×5×p Assembling the terms ⇒ 3q(5p + 3) + 5(5p + 3) Therefore, the factors are ⇒ (5p + 3)(3q + 5)
(v) z − 7 + 7xy − xyz
⇒ z − 7 + 7×x×y − x×y×z Assembling the terms ⇒ z(1 − xy) − 7(1 − xy) Therefore, the factors are ⇒ (1 − xy)(z − 7)
|