Horje
Class 12 NCERT Solutions- Mathematics Part ii – Chapter 9– Differential Equations Exercise 9.2

In each of Exercises 1 to 10, verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:

Question 1. y = ex + 1 : y” – y = 0

Solution:

Given: y = ex + 1, differentiating both sides w.r.t.x., we have:

[Tex]\frac{dy}{dx}=\frac{d}{dx}(e^x+1)[/Tex]

⇒ y’ = ex

[Tex]\frac{d}{dx}(y’)=\frac{d}{dx}(e^x)[/Tex]

⇒ y” = ex

Substituting the obtained values, we have

y” – y = ex – ex = 0 = RHS

Hence y is a solution of the given equation.

Question 2. y = x2 + 2x + C : y’ – 2x – 2 = 0

Solution:

Given: y = x2 + 2x + C, differentiating both sides w.r.t.x., we have:

[Tex]\frac{dy}{dx}=\frac{d}{dx}(x^2 + 2x + C)[/Tex]

⇒ y’ = 2x + 2

Substituting the obtained value, we have

y’ – 2x – 2 = (2x + 2) – 2x – 2 = 0 = RHS

Hence y is a solution of the given equation.

Question 3. y = cos x + C : y’ + sin x = 0

Solution:

Given: y = cos x + C, differentiating both sides w.r.t.x., we have:

[Tex]\frac{dy}{dx}=\frac{d}{dx}(cosx + C)[/Tex]

⇒ y’ = -sin x

Substituting the obtained value, we have

y’ + sin x = -sin x + sin x = 0 = RHS

Hence y is a solution of the given equation.

Question 4. y = [Tex]\sqrt{1+ x^2}[/Tex] : y’ = [Tex]\frac{xy}{1+x^2}[/Tex]

Solution:

Given: y = [Tex]\sqrt{1+x^2}[/Tex], differentiating both sides w.r.t.x., we have:

[Tex]\frac{dy}{dx}=\frac{d}{dx}(\sqrt{1+x^2})[/Tex]

= [Tex]\frac{1}{2\sqrt{1+x^2}}\times\frac{d}{dx}({1+x^2})[/Tex]

= [Tex]\frac{2x}{2\sqrt{1+x^2}}[/Tex]

= [Tex]\frac{x}{1+x^2}\times\sqrt{1+x^2}[/Tex]

= [Tex]\frac{x}{1+x^2}\times y[/Tex]

= [Tex]\frac{xy}{1+x^2}[/Tex]

= RHS

Hence y is a solution of the given equation.

Question 5. y = Ax : xy’ = y (x ≠ 0)

Solution:

Given: y = Ax, differentiating both sides w.r.t.x., we have:

[Tex]\frac{dy}{dx}=\frac{d}{dx}(Ax)[/Tex]

⇒ y’ = A

Substituting the obtained value, we have

xy’ = xA = Ax = y = RHS

Hence y is a solution of the given equation.

Question 6. y = x sin x : xy’ = y + x[Tex]\sqrt{x^2 − y^2}[/Tex] (x ≠ 0 and x > y) or x < – y

Solution:

Given: y = x sin x, differentiating both sides w.r.t.x., we have:

\frac{dy}{dx}=\frac{d}{dx}(x sin x)

⇒ y’ = [Tex]sin\space x.\frac{d}{dx}(x)+x.\frac{d}{dx}(sin\space x)[/Tex]

= sin x + x cos x

Substituting the obtained value, we have

xy’ = x(sin x + x cos x)

= x sin x + x2 cos x

= y + x2.[Tex]\sqrt{1-sin^2x}[/Tex]

= y + x2.[Tex]\sqrt{1-(\frac{y}{x})^2}[/Tex]

= [Tex]y + x\sqrt{x^2-y^2}[/Tex]

= RHS

Hence y is a solution of the given equation.

Question 7. xy = log y + C : y’ = [Tex]\frac{y^2}{1-xy}[/Tex]

Solution:

Given: y = log y + C, differentiating both sides w.r.t.x., we have:

[Tex]\frac{d}{dx}(xy)=\frac{d}{dx}(log\space y)[/Tex]

[Tex]y’ = y\frac{d}{dx}(x)+x.\frac{dy}{dx}=\frac{1}{x}\frac{dy}{dx}[/Tex]

= [Tex]y + xy’ = \frac{1}{y}.y'[/Tex]

= y2 + xyy’ = y’

= (xy – 1)y’ = -y2

y’ = [Tex]\frac{y^2}{1-xy}[/Tex]

LHS = RHS

Hence y is a solution of the given equation.

Question 8. y – cos y = x : (y sin y + cos y + x)y’ = y

Solution:

Given: y – cos y = x, differentiating both sides w.r.t.x., we have:

[Tex]\frac{dy}{dx}-\frac{d}{dx}(cos\space y)=\frac{d}{dx}(x)[/Tex]

⇒ y’ – (-sin y).y’ = 1

[Tex]⇒ y’ = \frac{1}{1+sin\space y}[/Tex]

Substituting the obtained value, we have

(y sin y + cos y + x)y’ = [Tex](y sin y + cos y + x) \times \frac{1}{1+sin\space y}\\=y(1+siny).\frac{1}{1+siny}[/Tex]

= y

= RHS

Hence y is a solution of the given equation.

Question 9. x + y = tan–1y : y2y’ + y2 + 1 = 0

Solution:

Given: x + y = tan–1y, differentiating both sides w.r.t.x., we have:

[Tex]\frac{d}{dx}(x+y)= \frac{d}{dx}(tan^{-1} y)\\ ⇒ 1 + y’ = \frac{y’}{1+y^2}\\ ⇒ y'[\frac{-y^2}{1+y^2}]=1\\ ⇒ y’ = \frac{-(1+y^2)}{y^2}[/Tex]

Substituting the obtained value, we have

y2y’ + y2 + 1 = [Tex]y^2\frac{-(1+y^2)}{y^2} + y^2 + 1[/Tex]

= -1 – y2 + y2 + 1

= 0

= RHS

Hence y is a solution of the given equation.

Question 10. [Tex]y = \sqrt{a^2 − x^2} \space : \space x + y\frac{dy}{dx} = 0[/Tex]

Solution:

Given: y = [Tex]\sqrt{a^2 − x^2}[/Tex], differentiating both sides w.r.t.x., we have:

[Tex]\frac{dy}{dx}= \frac{d}{dx}(\sqrt{a^2 − x^2})\\⇒\frac{dy}{dx}=\frac{1}{2\sqrt{a^2-x^2}}.\frac{d}{dx}(a^2-x^2)\\⇒\frac{dy}{dx}=\frac{1}{2\sqrt{a^2-x^2}}.(-2x)\\⇒\frac{dy}{dx}=\frac{-x}{\sqrt{a^2-x^2}}[/Tex]

Substituting the obtained value, we have

[Tex]x + y\frac{dy}{dx} = x + (\sqrt{a^2 − x^2}).(\frac{-x}{\sqrt{a^2-x^2}})[/Tex]

= x + (-x)

= 0

= RHS

Hence y is a solution of the given equation.

Question 11. The number of arbitrary constants in the general solution of a differential equation of fourth order are:

(A) 0 (B) 2 (C) 3 (D) 4

Solution:

Option D: We know that the number of constants in the general solution of an n-order differential equation is equal to its order. As a result, the general equation for a fourth order differential equation contains four constants.

Question 12. The number of arbitrary constants in the particular solution of a differential equation of third order are:

(A) 3 (B) 2 (C) 1 (D) 0

Solution:

Option D: The number of arbitrary constants in the particular solution of a third-order differential equation is zero because all constants are determined by the given conditions.

Related Articles-




Reffered: https://www.geeksforgeeks.org


Mathematics

Related
Subtraction of Decimal Subtraction of Decimal
Real-World Examples of Exponential Decay Real-World Examples of Exponential Decay
Application of Math in Electrical Engineering Application of Math in Electrical Engineering
Real Life Application of Math in Mechanical Engineering Real Life Application of Math in Mechanical Engineering
Real-Life Application of Lagrange Theorem Real-Life Application of Lagrange Theorem

Type:
Geek
Category:
Coding
Sub Category:
Tutorial
Uploaded by:
Admin
Views:
14