![]() |
Confirmatory Factor Analysis (CFA) is a powerful statistical technique used to validate and understand the underlying structure of observed variables. Whether we’re trying to understand why people behave the way they do or figuring out what makes customers tick, Confirmatory Factor Analysis is like a detective, piecing together clues to reveal the hidden structure. In this article, we will discuss how to measure Confirmatory Factor Analysis in R Programming Language. What is Confirmatory Factor Analysis?Confirmatory Factor Analysis (CFA) is a statistical method that helps us understand relationships between different variables in data. It’s like a puzzle solver – it helps us see how pieces (or variables) fit together to form bigger patterns (or factors). Confirmatory Factor Analysis is often used in fields like psychology, education, and marketing to test theories and understand how different factors influence each other. Features of Confirmatory Factor Analysis
Implement of Confirmatory Factor Analysis in RWe will take HolzingerSwineford1939 dataset that contains cognitive test scores of 301 schoolchildren, which can be used to demonstrate our Confirmatory Factor Analysis. Step 1: Load the required packages
Step 2: Load and Check the Structure of dataset
Output: id sex ageyr agemo school grade x1 x2 x3 x4 x5 x6 x7 x8 x9
1 1 1 13 1 Pasteur 7 3.333333 7.75 0.375 2.333333 5.75 1.2857143 3.391304 5.75 6.361111
2 2 2 13 7 Pasteur 7 5.333333 5.25 2.125 1.666667 3.00 1.2857143 3.782609 6.25 7.916667
3 3 2 13 1 Pasteur 7 4.500000 5.25 1.875 1.000000 1.75 0.4285714 3.260870 3.90 4.416667
4 4 1 13 2 Pasteur 7 5.333333 7.75 3.000 2.666667 4.50 2.4285714 3.000000 5.30 4.861111
5 5 2 12 2 Pasteur 7 4.833333 4.75 0.875 2.666667 4.00 2.5714286 3.695652 6.30 5.916667
6 6 2 14 1 Pasteur 7 5.333333 5.00 2.250 1.000000 3.00 0.8571429 4.347826 6.65 7.500000 Step 3: Specify the CFA Model
This model provided specifies the relationships between latent constructs (visual, textual, and speed) and their respective observed indicators (x1 to x9) in a Confirmatory Factor Analysis framework. This allows researchers to test hypotheses about the underlying structure of the observed data and to evaluate the fit of the proposed model to the observed data. Step 4: Run and Check the summary of CFA
Output: lavaan 0.6.17 ended normally after 35 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 21
Number of observations 301
Model Test User Model:
Test statistic 85.306
Degrees of freedom 24
P-value (Chi-square) 0.000
Parameter Estimates:
Standard errors Standard
Information Expected
Information saturated (h1) model Structured
Latent Variables:
Estimate Std.Err z-value P(>|z|)
visual =~
x1 1.000
x2 0.554 0.100 5.554 0.000
x3 0.729 0.109 6.685 0.000
textual =~
x4 1.000
x5 1.113 0.065 17.014 0.000
x6 0.926 0.055 16.703 0.000
speed =~
x7 1.000
x8 1.180 0.165 7.152 0.000
x9 1.082 0.151 7.155 0.000
Covariances:
Estimate Std.Err z-value P(>|z|)
visual ~~
textual 0.408 0.074 5.552 0.000
speed 0.262 0.056 4.660 0.000
textual ~~
speed 0.173 0.049 3.518 0.000
Variances:
Estimate Std.Err z-value P(>|z|)
.x1 0.549 0.114 4.833 0.000
.x2 1.134 0.102 11.146 0.000
.x3 0.844 0.091 9.317 0.000
.x4 0.371 0.048 7.779 0.000
.x5 0.446 0.058 7.642 0.000
.x6 0.356 0.043 8.277 0.000
.x7 0.799 0.081 9.823 0.000
.x8 0.488 0.074 6.573 0.000
.x9 0.566 0.071 8.003 0.000
visual 0.809 0.145 5.564 0.000
textual 0.979 0.112 8.737 0.000
speed 0.384 0.086 4.451 0.000
In the above code
ConclusionConfirmatory Factor Analysis (CFA) is a valuable tool for understanding hidden structures within observed variables. Here we explored its significance across various fields and its practical implementation in R using the ‘lavaan’ package with the ‘HolzingerSwineford1939’ dataset. Confirmatory Factor Analysis serves as a powerful instrument for unraveling complex data structures and facilitating informed decision-making across diverse domains. |
Reffered: https://www.geeksforgeeks.org
R Language |
Related |
---|
![]() |
![]() |
![]() |
![]() |
![]() |
Type: | Geek |
Category: | Coding |
Sub Category: | Tutorial |
Uploaded by: | Admin |
Views: | 13 |