![]() |
Time complexity is a crucial factor in algorithm analysis, helping us understand how the performance of an algorithm scales with input size. In Python, lists and sets are two commonly used data structures for storing collections of elements. Let’s explore and compare the time complexity of adding elements to lists and sets in various scenarios. Time Complexity For Adding Elements To List Vs Set In PythonBelow, are the examples of Time Complexity For Adding Elements To a List vs. a set In Python. Lists in PythonExample 1: Appending Elements to the End of a ListAppending an element to the end of a list has an amortized time complexity of O(1). Python lists are implemented as dynamic arrays, and adding an element to the end usually takes constant time, but occasionally the array may need to be resized, resulting in an O(n) operation. Python3
Output
[1] Example 2: Inserting Elements at a Specific PositionInserting an element at a specific position in a list takes O(n) time. This is because all elements following the insertion point need to be shifted to make room for the new element. Python3
Output
[1, 4, 2, 3] Example 3: Extending a ListExtending a list with another iterable takes O(k) time, where k is the length of the iterable being added. Python3
Output
[1, 2, 3, 4, 5] Sets in PythonExample 1 : Adding Elements to a SetAdding an element to a set generally has an average-case time complexity of O(1). However, in rare cases where hash collisions occur, it might be O(n), but such cases are infrequent. Python3
Output
{1, 2, 3, 4} Example 2:Updating a Set with Another SetUpdating a set with another set takes O(len(set2)) time. The time complexity is proportional to the size of the second set. Python3
Output
{1, 2, 3, 4, 5} Example 3: Union of SetsThe union operation creates a new set containing all distinct elements from both sets. It has a time complexity of O(len(set1) + len(set2)), as it essentially involves creating a new set and adding all elements from both sets. Python3
Output
{1, 2, 3, 4, 5} ConclusionIn conclusion, both lists and sets in Python offer different time complexities for adding elements. Lists are efficient for appending elements at the end, while sets shine in scenarios where unique elements are crucial. Understanding these complexities helps in choosing the right data structure based on specific use cases and performance requirements. |
Reffered: https://www.geeksforgeeks.org
Python |
Type: | Geek |
Category: | Coding |
Sub Category: | Tutorial |
Uploaded by: | Admin |
Views: | 14 |