![]() |
R is a powerful Programming Language that is widely used by data scientists and analysts. This language helps statistical analysis by providing a wide range of libraries and packages. These packages and libraries provide functions that make work easier and improve accuracy as well. One such function is the Get_Field() function in R Programming Language used to extract specific values from a data frame. In this article, we will understand the use of this function with the help of multiple examples. get_field() Function in Rget_function is a custom function in R. It is not a built-in function and therefore we have to define it first. This function is used to extract specific values from the dataset. This function makes our work easier because we don’t need to go through the entire dataset to get certain information, instead, we can use get_field() to get the required value. The basic syntax to use this function is given below:
data: it is the dataset or the list from which the value is to be extracted. How get_field() WorksThis function makes the code more readable and easy to access. get_field helps use the arguments to locate the field and return the required value which also reduces the time consumption. The function is designed to simplify the process of extracting specific values from a dataset. It also works when a certain field name is removed, added, or moved, it can still locate the field and return the specific value. We can understand this in a better way with the help of examples. Extracting a Column from a Data FrameThis is not an in-built function therefore we need to define it first. To define the get_function we can use the below given code. R
After defining the function we can use this custom function for its use. In this example, we will use a fictional small dataset. R
Output: Name Age Score
1 Alice 25 95
2 Bob 30 87
3 Charlie 22 92
[1] 25 30 22
Our output is the required age that we got using the get_field function for the respective names and scores of our dataset. Retrieving a List ElementWe can also extract a list element with the help of this function. In this example, we will take another fictional dataset. R
Output: $Name
[1] "David" "Eva" "Frank"
$Grade
[1] "A" "B" "C"
$Status
[1] "Pass" "Fail" "Pass"
[1] "Pass" "Fail" "Pass"
In this case, the get_field() function is applied to a list (my_list), and it extracts the “Status” element. The resulting status vector contains the pass/fail statuses. Extracting a specific valueTo find a specific value from a large dataset we can use this function instead of going through the entire dataset. This will save us time as well. Here we will use a large in-built dataset in R called the “mtcars” dataset. This dataset has information related to different cars of different brands and their features such as ‘horsepower’, ‘mpg’, ‘cylinder’ etc. R
Output: Horsepower of the Ford Mustang: 264
This code gave us the specific value of HP for the brand we needed. This saved our time and effort and is more accurate as well. Extracting Sales Value using the get_field functionIn this example, we will create a fictional dataset using different columns ‘Transaction_ID’, ‘Product_Name’, ‘Category’, ‘Quantity’, ‘Price’, and ‘Date’. We will use the get_field function to extract the total sales value. R
Output: Transaction_ID Product_Name Category Quantity Price Date
1 1 Tablet Accessories 1 964.35 2022-07-21
2 2 Tablet Office Supplies 4 692.00 2022-01-05
3 3 Phone Accessories 3 861.58 2022-03-18
4 4 Phone Accessories 2 461.16 2022-09-22
5 5 Tablet Office Supplies 3 929.32 2022-06-23
6 6 Monitor Office Supplies 7 766.66 2022-04-03
Extract ValuesR
Output: Total Sales for Electronics category: 955358.9
Extracting Laptop Features using the get_field functionIn this example, we will use an external dataset that has laptop features for different models. DataSet Link: Customizing function and Loading the dataset Make sure you replace the path dataset with the original dataset. R
Output: Brand Processor_Speed RAM_Size Storage_Capacity Screen_Size Weight Price Extracting values for specific modelsR
Output: [1] 4 22 36 48 75 81 83 113 129 130 286 288 297 310 328 358 360 382 397 453 474 530 534 A laptop with certain features are present in these indexes. ConclusionIn this article, we learned the use of the get_field() function and how it can be used in different ways to extract different values with the help of examples. |
Reffered: https://www.geeksforgeeks.org
Geeks Premier League |
Type: | Geek |
Category: | Coding |
Sub Category: | Tutorial |
Uploaded by: | Admin |
Views: | 11 |