![]() |
Vector Triple Product involves the multiplication of three vectors so that the output is also a vector. Vector Triple Product involves three vectors— [Tex]\vec{a}[/Tex], [Tex]\vec{b}[/Tex], and [Tex]\vec{c}[/Tex], by taking the cross product of [Tex]\vec{a}[/Tex] with the cross product of [Tex]\vec{b}[/Tex] and [Tex]\vec{c}[/Tex] the result, denoted as [Tex]\vec{a} \times (\vec{b} \times \vec{c})[/Tex], emerges as a new vector. This article covers the definition, formula, proof, and properties of the Vector Triple Product, offering a comprehensive exploration of its fundamental aspects. Additionally, we will address common questions and provide solved examples to enhance your understanding of this mathematical concept. Table of Content Vector Triple Product DefinitionThe vector triple product involves three vectors: [Tex]\vec{a}[/Tex], [Tex]\vec{b}[/Tex], and [Tex]\vec{c}[/Tex]. It is the result of taking the cross product of [Tex]\vec{a}[/Tex] with the cross product of [Tex]\vec{b}[/Tex] and [Tex]\vec{c}[/Tex]. Mathematically, it’s expressed as [Tex]\vec{a}[/Tex] × [Tex]\vec{b}[/Tex] × [Tex]\vec{c}[/Tex]. ![]() Vector Triple Product The resulting vector lies in the same plane as [Tex]\vec{b}[/Tex] and [Tex]\vec{c}[/Tex] and is perpendicular to [Tex]\vec{a}[/Tex]. Another way to represent the vector triple product is by expressing it as a combination of [Tex]\vec{b}[/Tex] and [Tex]\vec{c}[/Tex], written as [Tex]\vec{a}[/Tex] × ([Tex]\vec{b}[/Tex] × [Tex]\vec{c}[/Tex]) = [Tex]x \vec{b} + y \vec{c}[/Tex]). Vector Triple Product FormulaThe vector triple product involves three vectors: [Tex]\vec{a}[/Tex], [Tex]\vec{b}[/Tex], and [Tex]\vec{c}[/Tex]. The formula is [Tex]\vec{a} \times (\vec{b} \times \vec{c})[/Tex]. Cross Product of [Tex]\vec{b}[/Tex] and [Tex]\vec{c}[/Tex]: First, find the cross product of [Tex]\vec{b}[/Tex] and [Tex]\vec{c}[/Tex]. [Tex]\vec{b} \times \vec{c}[/Tex] Multiply by [Tex]\vec{a}[/Tex]: Take this result and perform a cross product with [Tex]\vec{a}[/Tex]. [Tex]\vec{a} \times (\vec{b} \times \vec{c})[/Tex] Resulting Vector: The final vector obtained is coplanar with [Tex]\vec{b}[/Tex] and [Tex]\vec{c}[/Tex] and perpendicular to [Tex]\vec{a}[/Tex]. This formula can also be expressed as a linear combination of [Tex]\vec{b}[/Tex] and [Tex]\vec{c}[/Tex]: [Tex]\vec{a} \times (\vec{b} \times \vec{c}) = x \vec{b} + y \vec{c} [/Tex] This means the triple product result can be written as a combination of [Tex]\vec{b}[/Tex] and [Tex]\vec{c}[/Tex], where (x) and (y) are coefficients. Now, the vector triple product formula is, [Tex]\vec{a}\times(\vec{b}\times\vec{c})~=~(\vec{a}.\vec{c})\vec{b}~-~(\vec{a}.\vec{b})\vec{c} [/Tex] Vector Triple Product ProofProving the vector triple product formula involves some vector algebra. Let’s break it down step by step The vector triple product formula is [Tex]\vec{a} \times (\vec{b} \times \vec{c})[/Tex] Start with Cross Product [Tex]\vec{b} \times \vec{c}[/Tex] Use Scalar Triple Product Identity Scalar triple product identity is [Tex]\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a})[/Tex] . Applying this identity, we can rewrite the expression: [Tex]\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a})[/Tex] Expand both sides of the equation using the vector triple product definition: [Tex]\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) [/Tex] [Tex]\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{a} \times \vec{c}) [/Tex] Apply Vector Triple Product Identity The vector triple product identity is [Tex]\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} – (\vec{a} \cdot \vec{b})\vec{c} [/Tex] Substitute this into the equation: [Tex](\vec{a} \cdot \vec{c})\vec{b} – (\vec{a} \cdot \vec{b})\vec{c} = \vec{b} \cdot (\vec{a} \times \vec{c}) [/Tex] Rearrange the terms to isolate ([Tex]\vec{a} \times (\vec{b} \times \vec{c})[/Tex]: [Tex]\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{b})\vec{c} – (\vec{a} \cdot \vec{c})\vec{b} [/Tex] Properties of Vector Triple ProductProperties of the Vector Triple Product are,
Associative Property of Vector Triple Product
Article Related to Vector Triple Product: Examples on Vector Triple ProductExample 1: Given three vectors [Tex]\vec{a} = \hat{i} + 2\hat{j} – \hat{k} [/Tex], [Tex]\vec{b} = \hat{i} – \hat{j} + \hat{k} [/Tex], and [Tex]\vec{c} = \hat{i} + \hat{j} + \hat{k} [/Tex], calculate the vector triple product [Tex]\vec{a} \times (\vec{b} \times \vec{c}) [/Tex] Solution:
Example 2: Verify whether the equation [Tex]\vec{p} = \vec{q} \times (\vec{r} \times \vec{s}) [/Tex] holds true, where [Tex]\vec{p} = \hat{i} + \hat{j} [/Tex] , [Tex]\vec{q} = 2\hat{i} – \hat{j} [/Tex], [Tex]\vec{r} = \hat{i} + 3\hat{j} + 2\hat{k} [/Tex], and [Tex]\vec{s} = \hat{k} [/Tex]. Solution:
Practice Problems on Vector Triple ProductP1. Given three vectors [Tex]\vec{a}[/Tex], [Tex]\vec{b}[/Tex], [Tex]\vec{c}[/Tex], calculate the vector triple product [Tex]\vec{a} \times (\vec{b} \times \vec{c}) [/Tex]. P2. Determine the unit vector that is coplanar with [Tex]\vec{u} = 3\hat{i} + 2\hat{j} – \hat{k} [/Tex] and [Tex]\vec{v} = \hat{i} – \hat{j} + 2\hat{k} [/Tex], and perpendicular to [Tex]\vec{w} = 2\hat{i} + \hat{j} + 3\hat{k} [/Tex] using the vector triple product. P3. Verify whether the equation [Tex]\vec{p} = \vec{q} \times (\vec{r} \times \vec{s}) [/Tex] holds true, where [Tex]\vec{p} = \hat{i} + \hat{j} [/Tex], [Tex]\vec{q} = 2\hat{i} – \hat{j} [/Tex], [Tex]\vec{r} = \hat{i} + 3\hat{j} + 2\hat{k} [/Tex], and [Tex]\vec{s} = \hat{k} [/Tex]. P4. If [Tex]\vec{a} = 2\hat{i} – \hat{j} [/Tex], [Tex]\vec{b} = \hat{i} + \hat{j} + \hat{k} [/Tex], and [Tex]\vec{c} = -\hat{j} + 3\hat{k} [/Tex], find the angle between [Tex]\vec{a} \times (\vec{b} \times \vec{c}) [/Tex] and [Tex]\vec{c} [/Tex]. P5. Given non-coplanar vectors [Tex]\vec{u} = \hat{i} – 2\hat{j} + 3\hat{k} [/Tex], [Tex]\vec{v} = 2\hat{i} + \hat{j} – \hat{k} [/Tex], and [Tex]\vec{w} = -\hat{i} + \hat{j} + 2\hat{k} [/Tex], prove that [Tex]\vec{u} \times \vec{v} [/Tex], [Tex]\vec{v} \times \vec{w} [/Tex], and [Tex]\vec{w} \times \vec{u} [/Tex] are also non-coplanar. Vector Triple Product-FAQsWhat is Vector Triple Product?
How is the Vector Triple Product Expressed Mathematically?
What is the Geometric Interpretation of Vector Triple Product?
What is the Formula for Triple Dot Product?
What is the Vector Triple Product Identity?
|
Reffered: https://www.geeksforgeeks.org
Class 12 |
Type: | Geek |
Category: | Coding |
Sub Category: | Tutorial |
Uploaded by: | Admin |
Views: | 15 |