![]() |
Have you ever wondered how data enthusiasts turn raw, messy data into meaningful insights that can change the world (or at least, a business)? Imagine you’re given a huge, jumbled-up puzzle. Each piece is a data point, and the picture on the puzzle is the information you want to uncover. Data manipulation is like sorting, arranging, and connecting those puzzle pieces to reveal the bigger picture. Data Manipulation is one of the initial processes done in Data Analysis. It involves arranging or rearranging data points to make it easier for users/data analysts to perform necessary insights or business directives. Data Manipulation encompasses a broad range of tools and languages, which may include coding and non-coding techniques. It is not only used extensively by Data Analysts but also by business people and accountants to view the budget of a certain project. It also has its programming language, DML (Data Manipulation Language) which is used to alter data in databases. Let’s know what exactly Data manipulation is. Table of ContentWhat is Data Manipulation?Data Manipulation is the process of manipulating (creating, arranging, deleting) data points in a given data to get insights much easier. We know that about 90% of the data we have are unstructured. Data manipulation is a fundamental step in data analysis, data mining, and data preparation for machine learning and is essential for making informed decisions and drawing conclusions from raw data. To make use of these data points, we perform data manipulation. It involves:
Steps Required to Perform Data ManipulationThe steps we perform in Data Manipulation are:
We’ll see more on each of these steps in detail below. Tools Used in Data ManipulationMany tools are used in Data Manipulation. Some most popularly known tools with no-code/code Data manipulation functionalities are:
Operations of Data ManipulationData Manipulation follows the 4 main operations, CRUD (Create, Read, Update and Delete). It is used in many industries to improve the overall output. In most DML, there is some version of the CRUD operations where:
These 4 main operations are performed in different ways seen below:
Example of Data ManipulationLet us see a basic example of Data manipulation in more detail. We can see that there are examples of Data Manipulation that can be used as a baseline. First of all, Import the data, load it and display it. Considering you have a dataset, you’ll need to load it and display it. The Iris dataset is viewed below: ![]() Iris Dataset This reads the Iris Dataset and prints the last 5 values of the Dataset. Python
Output: ![]() Output of iris Dataset Use of Data ManipulationIn today’s world where every business has become competitive and undergoing digital transformation, the right data is paramount for all decision-making abilities. Hence, to achieve our results easier and faster, we implement data manipulation. There are many reasons why we need to manipulate our data. They are:
ConclusionDue to unrestricted globalization, and near-digitization of all industries, there is a greater need for correct data for good business insights. This calls for even more rigorous Data Manipulation Techniques in both the coding sphere and the lowcode/nocode spheres. Various programming languages and tools, such as Python with libraries like pandas, R, SQL, and Excel, are commonly used for data manipulation tasks. Data Manipulation may be hard if the data mined is unreliable. Hence there are even more regulations on data mining, Data Manipulation and Data Analysis. Data Manipulation FAQs1. What tasks can I perform with data manipulation?
2. What is the role of SQL in data manipulation?
3. Can I use Excel for data manipulation?
|
Reffered: https://www.geeksforgeeks.org
GBlog |
Type: | Geek |
Category: | Coding |
Sub Category: | Tutorial |
Uploaded by: | Admin |
Views: | 15 |