![]() |
In this tutorial series, we are going to cover Linear Regression using Pyspark. Linear Regression is a machine learning algorithm that is used to perform regression methods. Linear Regression is a supervised machine learning algorithm where we know inputs as well as outputs. Loading Dataframe : We will be using the data for “E-commerce Customer Data for a company’s website and mobile app”. The task is to predict the customer’s yearly spending on the company’s product. Dataset link: [https://www.kaggle.com/datasets/pawankumargunjan/ecommercecustomers] Step 1: Starting the Pyspark Server:Python3
Output: SparkSession - in-memory SparkContext Spark UI Version v3.3.1 Master local[*] AppName LinearRegression Step 2: Load the dataset:Python3
Output: +--------------------+--------------------+----------------+------------------+------------------+------------------+--------------------+-------------------+ | Email| Address| Avatar|Avg Session Length| Time on App| Time on Website|Length of Membership|Yearly Amount Spent| +--------------------+--------------------+----------------+------------------+------------------+------------------+--------------------+-------------------+ |mstephenson@ferna...|835 Frank TunnelW...| Violet| 34.49726772511229| 12.65565114916675| 39.57766801952616| 4.0826206329529615| 587.9510539684005| | [email protected]|4547 Archer Commo...| DarkGreen| 31.92627202636016|11.109460728682564|37.268958868297744| 2.66403418213262| 392.2049334443264| | [email protected]|24645 Valerie Uni...| Bisque|33.000914755642675|11.330278057777512|37.110597442120856| 4.104543202376424| 487.54750486747207| |riverarebecca@gma...|1414 David Throug...| SaddleBrown| 34.30555662975554|13.717513665142507| 36.72128267790313| 3.120178782748092| 581.8523440352177| |mstephens@davidso...|14023 Rodriguez P...|MediumAquaMarine| 33.33067252364639|12.795188551078114| 37.53665330059473| 4.446308318351434| 599.4060920457634| +--------------------+--------------------+----------------+------------------+------------------+------------------+--------------------+-------------------+ only showing top 5 rows Step 3: Check the columns name Python3
Output: ['Email', 'Address', 'Avatar', 'Avg Session Length', 'Time on App', 'Time on Website', 'Length of Membership', 'Yearly Amount Spent'] Step 4: The next task is to assemble the data in form of vectors which will be the “features”.Python3
Output: +--------------------+ | features| +--------------------+ |[34.4972677251122...| |[31.9262720263601...| |[33.0009147556426...| |[34.3055566297555...| |[33.3306725236463...| +--------------------+ only showing top 5 rows Step 5: Split the whole data into train data and test data which will be used for training and testing respectively.Python3
Let’s describe the train data and test data.Python3
Output: +-------+-------------------+ |summary|Yearly Amount Spent| +-------+-------------------+ | count| 357| | mean| 496.7071530755217| | stddev| 80.03111843524778| | min| 256.67058229005585| | max| 765.5184619388373| +-------+-------------------+ +-------+-------------------+ |summary|Yearly Amount Spent| +-------+-------------------+ | count| 143| | mean| 505.82213623310577| | stddev| 77.39011604239676| | min| 275.9184206503857| | max| 744.2218671047146| +-------+-------------------+ Step 6: create a model for Linear Regression and fit it on training data.Python3
Output: LinearRegressionModel: uid=LinearRegression_74214a54e364, numFeatures=4 Step 7: Print the coefficient and Intercept of the modelPython3
Output: Coefficients: [25.964105285025216,38.93669968512164,0.2862951403317341,61.42916517189798] Intercept: -1055.4964671721655 Step 8: Evaluation of model on test data:Python3
Output: +-------------------+ | residuals| +-------------------+ | 11.275316471318774| | 0.6070843579793177| | 6.966802347383464| | -6.151576882623033| |-7.3822955579703375| +-------------------+ only showing top 5 rows Step 9: Prediction on new datasetPython3
Output: +--------------------+------------------+ | features| prediction| +--------------------+------------------+ |[29.5324289670579...| 397.3650346013087| |[30.5743636841713...|441.45732940008634| |[30.9716756438877...|487.67180740950926| |[31.0613251567161...|493.70703494052464| |[31.1280900496166...| 564.634982305025| +--------------------+------------------+ only showing top 5 rows Step 10: Calculating Root Mean Squared Error and Mean Squared Error for checking the efficiency of our model:Python3
Output: RMSE: 9.965510046039142 MSE: 99.31139047770706 Step 11: Stop the sessionPython3
|
Reffered: https://www.geeksforgeeks.org
AI ML DS |
Type: | Geek |
Category: | Coding |
Sub Category: | Tutorial |
Uploaded by: | Admin |
Views: | 11 |