![]() |
Standard Form of the Quadratic Equation is ax2 + bx + c = 0, where a, b, and c are constants and x is a variable. Standard Form is a common way of representing any notation or equation. Quadratic equations can also be represented in other forms as,
![]() Standard Form of Quadratic Equation In this article we will learn about the standard form of the quadratic equation, changing it into the standard form of the quadratic equation and others in detail. ![]() Standard Form of Quadratic Equation Standard Form of a Quadratic EquationQuadratic Equations are second-degree equations in a single variable and the standard form of Quadratic Equations is given as follows:
Examples of Standard Form of Quadratic EquationVarious examples of the quadratic equation in standard form are,
General Form of Quadratic EquationThe general form of quadratic equation is similar to the standard form of the quadratic equation. The general form of the quadratic equation is, ax2 + bx + c = 0 where a, b and c are Real Numbers and a ≠ 0. Learn More Convert Quadratic Equations to Standard FormConverting Quadratic Equations to Standard Form
Example of Converting Quadratic Equations to Standard FormLet’s understand the concept of Converting Quadratic Equations to Standard Form using the following example: Example: Convert the following linear equation into Standard Form: 2x2 – 5x = 2x + 3
Convert Standard Form of Quadratic Equation into Vertex FormWe know that the standard form of a quadratic equation is ax2 + bx + c = 0 and the vertex form is a(x – h)2 + k = 0 (where (h, k) is the vertex of the quadratic function. Now we can easily convert the standard form into vertex form by comparing these two equations as,
Now the formulas h = -b/2a and k = (4ac – b2) /(4a) are used to convert the standard to vertex form. Example of Converting Standard Form to Vertex FormConsider the quadratic equation 3x2 – 6x + 4 = 0. Comparing this with ax2 + bx + c = 0, we get a = 3, b = -6, and c = 4. Now for vertex form, we found h and k
Converting Vertex Form to Standard FormWe can easily convert the vertex form of a quadratic equation into the standard form by simply solving (x – h)2 = (x – h) (x – h) and simplifying. Let us consider the above example 2(x – 1)2 + 1 = 0 and convert it back into standard form.
Equation (i) is the required standard form of the quadratic form. Converting Standard Form of Quadratic Equation into Intercept FormWe know that the standard form of a quadratic equation is ax2 + bx + c = 0 and the vertex form is a(x – p)(x – q) = 0 where (p, 0) and (q, 0) are the x-intercept and y-intercept respectively. Now we can easily convert the standard form into intercept form by solving quadratic equations as p and q are the roots of the quadratic equation. Example of Converting Standard Form to Intercept FormConsider the quadratic equation 3x2 – 8x + 4 = 0. Comparing this with ax2 + bx + c = 0, we get a = 3, b = -8, and c = 4. Now finding the roots of the quadratic equation as 3x2 – 8x + 4 = 0 ⇒ 3x2 – (6+2)x + 4 = 0 ⇒ 3x2 – 6x – 2x + 4 = 0 ⇒ 3x(x – 2) -2(x – 2) = 0 ⇒ (3x -2)(x – 2) = 0 ⇒ (3x -2) = 0 and (x – 2) = 0 ⇒ x = 2/3 and x = 2 Thus, the intercept form of the quadratic equation is, a(x – p)(x – q) = 0 ⇒ 3(x – 2/3)(x – 2) = 0 ⇒ (3x -2)(x – 2) = 0 Convert Intercept Form to Standard FormWe can easily convert the vertex form of a quadratic equation into the standard form by simply solving (x – p)(x – q) = 0 and simplifying. Let us consider the above example (3x -2)(x – 2) = 0 and convert it back into standard form.
Read More Examples of Quadratic Equations in Standard FormExample 1: Convert the given quadratic equation 2x – 9 = 7x2 in standard form. Solution:
Example 2: Convert the given quadratic equation (2x/7)-1 = 2x2 in standard form. Solution:
Example 3: Convert the given equation (2x3/x) + 4 = 2x in standard form. Solution:
Example 4: Convert the given quadratic equation into standard form (3/x) – 2x = 5. Solution:
Practice Questions on Standard Form of Quadratic Equation1. Convert the following quadratic equation from standard to vertex form: x2 – 4x + 1 = 0. 2. Convert the following quadratic equation from standard to intercept form: 2x2 + 9x + 24 = 0. 3. Convert the following quadratic equation from standard to vertex form: -4x2 – 12x + 16 = 0. 4. Convert the following quadratic equation from standard to Intercept form: 11x2 + 8x + * = 0. Standard Form of Quadratic Equation – FAQsWhat is Standard Form Formula?
What is Standard Form Formula for Linear Equations?
What is the Standard Form of Quadratic Equation?
What is Standard Form Formula for Polynomials?
What are Examples of Quadratic Equations in Standard Form?
How do you Write a Quadratic Equation in Standard Form?
What is the Standard Form of a Quadratic Equation with Examples?
|
Reffered: https://www.geeksforgeeks.org
Class 10 |
Related |
---|
![]() |
![]() |
![]() |
![]() |
![]() |
Type: | Geek |
Category: | Coding |
Sub Category: | Tutorial |
Uploaded by: | Admin |
Views: | 11 |