The simplified value of 4x/(4x+3) – (4x2)/(4x+3)2 is 12(x2 + 1)/{16x2 + 24x + 9}. The detailed solution for the same is added below:
Simplify 4x/(4x+3) – (4x2)/(4x+3)2.Solution:
Since the LCM of 4x + 3 and (4x + 3)2 is (4x + 3)2.
[Tex]\begin{aligned}\dfrac{4x}{4x+3}-\dfrac{4x^2}{(4x+3)^2}&\\=\dfrac{4x(4x+3)-4x^2}{(4x+3)^2}\\&\\=\dfrac{16x^2+12x-4x^2}{16x^2+24x+9}\\&\\=\dfrac{12x^2+12}{16x^2+24x+9}\end{aligned}
[/Tex]
Similar ProblemsProblem 1: Simplify: [Tex]\dfrac{p(p-8)+5(p-8)}{2p(p^2-8p-4p+32)}[/Tex].
Solution:
[Tex]\begin{aligned}\dfrac{4ab^2(-5ab^3)}{10a^2b^2}&=\dfrac{-20(a)^{1+1}(b)^{2+3}}{10a^2b^2}\\&= \dfrac{-2a^2b^5}{a^2b^2}\\&=-2a^{2-2}b^{5-2}\\&=-2(1)b^3\\&=-2b^3\end{aligned}
[/Tex]
Problem 2: Simplify: [Tex]\dfrac{(p^{1/7})^{49}}{\left(\dfrac{14p^{1/2}}{(p^{26})^{-1/7}}\right)}.
[/Tex]
Solution:
[Tex]\begin{aligned}\dfrac{(p^{1/7})^{49}}{\left(\dfrac{14p^{1/2}}{(p^{26})^{-1/7}}\right)}&=\dfrac{p^{49/7}}{\left(\dfrac{14p^{1/2}}{p^{-26/7}}\right)}\\&= \dfrac{p^7}{{14p^{1/2-(-26/7)}}} \\&= \dfrac{p^7}{{14p^{59/14}}}\\&= \dfrac{{p^{7-\frac{59}{14}}}}{14}\\&= \dfrac{p^{\frac{39}{14}}}{14}\end{aligned}
[/Tex]
Problem 3: Simplify: 3x2(2xy – 3xy2 + 4x2y3).
Solution:
P = 3x2(2xy − 3xy2 + 4x2y3)
Since, am.an = am+n
P = 6×2+1y − 9×2+1y2 + 12×2+2y3
= 6x3y − 9x3y2 + 12x4y3
Problem 4: Simplify: (25t-4)/(5-3 × 10t-8).
Solution:
[25t-4]/[5-3 × 10 × t-8]
= (52 × t−4)/(5−3 × 5 × 2 × t−8 )
= (52 × t−4)/(5−3+1 × 2 × t−8) [Since, am × an = am+n]
= (52 × t−4)/(5−2 × 2 × t−8)
= (52−(−2) × t−4−(−8))/2 [Since, am/an = am−n]
= (54 × t4)/2
= 625t4/2
Problem 5: Simplify: 1/2x-99.
Solution:
Using the property a-m = 1/ am, which is known as the Negative Exponent Law,
1/ 2x-99
= 1/2(x99) = (x99)/2
|