|
Derivatives are used to find rate of change of a function with respect to variables. To find rate of change of function with respect to a variable differentiating it with respect to that variable is required. Rate of change of function y = f(x) with respect to x is defined by dy/dx or f'(x). For example y = x2 + x then, dy/dx = f'(x) = d(x2+ x)/dx = 2x + 1. When two variables (let x = f(t) and y = g(t)) varying with respect to another variable t then the rate of change is calculated by the chain rule. Rate of change of y with respect to x is: dy/dx = (dy/dt) × (dt/dx). For example, x = t and y = 2t , then dy/dx is calculated as: dx/dt = 1 or dt/dx = 1 and dy/dt = 2. Hence, dy/dx = (dy/dt) × (dt/dx) = 2 × 1 = 2. Therefore, the rate of change of y with respect to x is calculated as the rate of change of y with respect to t and the rate of change of t with respect to x. Application of derivativesDerivatives are majorly used in mathematics to find any variable’s value change w.r.t another variable. In real life also, derivatives are seen and discussed. For instance, the word speed is mentioned a lot, but very few know that speed is also a derivative, speed is the change in the distance w.r.t time. Let’s look at some important applications of derivatives,
Tangent and NormalTangent to a curve at a given point is a straight line that touches the curve at a given point (does not intersect the curve, only touches the curve at a given point). Whereas Normal is a straight line that is perpendicular to the tangent. Hence, the product of slope of tangent and normal is -1. Let denoted slope of tangent and normal be mT and mN respectively. Then,
Equation of Tangent and NormalSlope of tangent to a curve whose equation is y = f(x) at a point a is f'(a) (derivative of f(x) at point a). Hence, equation of tangent in point-slope form is
and using equation mT × mN = -1, Equation of normal is:
Sample ProblemsQuestion 1: y = x2 is an equation of a curve, find the equation of tangent, and normal at point (1, 1). Solution:
Question 2: y = x4 + x2 is an equation of a curve, find the equation of tangent and normal at point (1, 2) Solution:
Question 3: y = x is an equation of a curve, find the equation of tangent and normal at point (1, 1). Solution:
Question 4: x = t and y = t is an equation of curve, find equation of tangent and normal at point t = 2. Solution:
Question 5: x = t and y = t2 is an equation of curve and, find equation of tangent and normal at point t = 1. Solution:
|
Reffered: https://www.geeksforgeeks.org
Class 12 |
Type: | Geek |
Category: | Coding |
Sub Category: | Tutorial |
Uploaded by: | Admin |
Views: | 11 |