Horje
Count subsequences 01 in string generated by concatenation of given numeric string K times

Given a string S and a positive integer K, the task is to find the number of subsequences “01” in the string generated by concatenation of the given numeric string S K times.

Examples:

Input: S = “0171”, K = 2
Output: 6
Explanation:
The string formed by concatenation of S, K number of times is “01710171”. There are total 6 possible subsequences which are marked as bold = {“01710171″, “01710171″, “01710171″, “01710171“, “01710171″, “01710171“}.

Input: S = “230013110087”, K = 2
Output: 24   

Naive Approach: The simplest approach to solve the given problem is to generate the resultant string by concatenating S, K number of times and then find all possible pairs (i, j) from the string such that (i < j) and S[i] = 0 and S[j] = 1.

Time Complexity: O((N*K)2)
Auxiliary Space: O(N*K)

Efficient Approach: The task can also be optimized by observing the following 2 Cases:

  • Case 1: Substring “01” strictly inside each occurrence of S in P. Let suppose C be the count of occurrences of “01” in S, then in P it would be C*K.
  • Case 2: When ‘0‘ lies inside at ith occurrence of S and ‘1‘ lies inside some jth occurrence to form a subsequence “01” such that i < j, then finding the number of occurrences of “01” will be the same as choosing the two strings or occurrence of strings in P given by ((K)*(K – 1))/2. Let that value be Si and Sj and multiplying it by the number of occurrences of ‘0’ in Si(denoted by cnt0) and a number of occurrences of ‘1’ in Sj(denoted by cnt1) gives the number of subsequences of “01”.

Below is the implementation of the above approach:

C++

// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the number of
// subsequences of "01"
int countSubsequence(string S, int N,
                     int K)
{
    // Store count of 0's and 1's
    int C = 0, C1 = 0, C0 = 0;
 
    for (int i = 0; i < N; i++) {
        if (S[i] == '1')
            C1++;
        else if (S[i] == '0')
            C0++;
    }
 
    // Count of subsequences without
    // concatenation
    int B1 = 0;
    for (int i = 0; i < N; i++) {
        if (S[i] == '1')
            B1++;
        else if (S[i] == '0')
            C = C + (C1 - B1);
    }
 
    // Case 1
    int ans = C * K;
 
    // Case 2
    ans += (C1 * C0 * (((K) * (K - 1)) / 2));
 
    // Return the total count
    return ans;
}
 
// Driver Code
int main()
{
    string S = "230013110087";
    int K = 2;
    int N = S.length();
 
    cout << countSubsequence(S, N, K);
 
    return 0;
}

Java

// Java program for the above approach
import java.io.*;
 
class GFG {
 
    // Function to calculate the number of
    // subsequences of "01"
    static int countSubsequence(String S, int N, int K)
    {
        // Store count of 0's and 1's
        int C = 0, C1 = 0, C0 = 0;
 
        for (int i = 0; i < N; i++) {
            if (S.charAt(i) == '1')
                C1++;
            else if (S.charAt(i) == '0')
                C0++;
        }
 
        // Count of subsequences without
        // concatenation
        int B1 = 0;
        for (int i = 0; i < N; i++) {
            if (S.charAt(i) == '1')
                B1++;
            else if (S.charAt(i) == '0')
                C = C + (C1 - B1);
        }
 
        // Case 1
        int ans = C * K;
 
        // Case 2
        ans += (C1 * C0 * (((K) * (K - 1)) / 2));
 
        // Return the total count
        return ans;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        String S = "230013110087";
        int K = 2;
        int N = S.length();
 
        System.out.println(countSubsequence(S, N, K));
    }
}
 
// This code  is contributed by Potta Lokesh

Python3

# python program for the above approach
 
 
# Function to calculate the number of
# subsequences of "01"
def countSubsequence(S, N, K):
 
        # Store count of 0's and 1's
    C = 0
    C1 = 0
    C0 = 0
 
    for i in range(0, N):
 
        if (S[i] == '1'):
            C1 += 1
        elif (S[i] == '0'):
            C0 += 1
 
        # Count of subsequences without
        # concatenation
    B1 = 0
 
    for i in range(0, N):
        if (S[i] == '1'):
            B1 += 1
        elif (S[i] == '0'):
            C = C + (C1 - B1)
 
        # Case 1
    ans = C * K
 
    # Case 2
 
    ans += (C1 * C0 * (((K) * (K - 1)) // 2))
 
    # Return the total count
    return ans
 
 
# Driver Code
if __name__ == "__main__":
 
    S = "230013110087"
    K = 2
    N = len(S)
 
    print(countSubsequence(S, N, K))
 
    # This code is contributed by rakeshsahni

C#

// C# implementation for the above approach
using System;
class GFG
{
 
    // Function to calculate the number of
    // subsequences of "01"
    static int countSubsequence(string S, int N, int K)
    {
       
        // Store count of 0's and 1's
        int C = 0, C1 = 0, C0 = 0;
 
        for (int i = 0; i < N; i++) {
            if (S[i] == '1')
                C1++;
            else if (S[i] == '0')
                C0++;
        }
 
        // Count of subsequences without
        // concatenation
        int B1 = 0;
        for (int i = 0; i < N; i++) {
            if (S[i] == '1')
                B1++;
            else if (S[i] == '0')
                C = C + (C1 - B1);
        }
 
        // Case 1
        int ans = C * K;
 
        // Case 2
        ans += (C1 * C0 * (((K) * (K - 1)) / 2));
 
        // Return the total count
        return ans;
    }
 
    // Driver Code
    public static void Main()
    {
        string S = "230013110087";
        int K = 2;
        int N = S.Length;
 
        Console.Write(countSubsequence(S, N, K));
    }
}
 
// This code is contributed by sanjoy_62.

Javascript

<script>
// Javascript program for the above approach
 
// Function to calculate the number of
// subsequences of "01"
function countSubsequence(S, N, K) {
  // Store count of 0's and 1's
  let C = 0,
    C1 = 0,
    C0 = 0;
 
  for (let i = 0; i < N; i++) {
    if (S[i] == "1") C1++;
    else if (S[i] == "0") C0++;
  }
 
  // Count of subsequences without
  // concatenation
  let B1 = 0;
  for (let i = 0; i < N; i++) {
    if (S[i] == "1") B1++;
    else if (S[i] == "0") C = C + (C1 - B1);
  }
 
  // Case 1
  let ans = C * K;
 
  // Case 2
  ans += C1 * C0 * ((K * (K - 1)) / 2);
 
  // Return the total count
  return ans;
}
 
// Driver Code
 
let S = "230013110087";
let K = 2;
let N = S.length;
 
document.write(countSubsequence(S, N, K));
 
// This code is contributed by gfgking.
</script>

Output: 

24

 

Time Complexity: O(N)
Auxiliary Space: O(1)




Reffered: https://www.geeksforgeeks.org


Strings

Related
Make Palindrome binary string with exactly a 0s and b 1s by replacing wild card ? Make Palindrome binary string with exactly a 0s and b 1s by replacing wild card ?
Count of substrings from given Ternary strings containing characters at least once Count of substrings from given Ternary strings containing characters at least once
Lexicographically smallest numeric string having odd digit counts Lexicographically smallest numeric string having odd digit counts
Sum of the shortest distance between all 0s to 1 in given binary string Sum of the shortest distance between all 0s to 1 in given binary string
Average value of set bit count in given Binary string after performing all possible choices of K operations Average value of set bit count in given Binary string after performing all possible choices of K operations

Type:
Geek
Category:
Coding
Sub Category:
Tutorial
Uploaded by:
Admin
Views:
12