![]() |
A scatter matrix, also known as a pair plot, is a powerful visualization tool in data analysis. It provides a grid of scatter plots that display relationships between pairs of variables in a dataset, helping engineers and data scientists to identify patterns, correlations, and potential outliers. Read More: Scatter Plot Matrix We calculate Sw ( within the class scatter matrix ) and SB ( between the class scatter matrix ) for the available data points. SW : To minimize variability within a class, inner class scatter. ![]() scatter plot of the points X1 = (y1, y2) ={ (2,2), (1,2), (1,2), (1,2), (2,2) } X2 = (y1,y2) ={ (9, 10), (6,8), (9,5), (8,7), (10,8) } Within class scatter matrix: [Tex]S_W = \sum_{i=1}^{c}S_i \\ S_i = \sum_{x\in D_i}^{c} (x-m_i)(x-m_i)^{T}[/Tex] Si is the class specific covariance matrix. mi is the mean of individual class Mean CalculationWe calculate the mean for each of the points present in the class. Here mean is the total sum of observations divided by the number of observations, we require this mean for calculating the covariance of the matrix. [Tex]m_1 = [\frac{2+1+1+1+2}{5} , \frac{2+2+2+2+2}{5} ] \\ = [1.4,2][/Tex] [Tex]m_2 = [\frac{9+6+9+8+10}{5} , \frac{10+8+5+7+8}{5} ] \\ = [8.4,7.6][/Tex] Covariance matrix computation : Class specific covariance for the first class : [Tex](X1-m_1) = \begin{bmatrix} 0.6 & -0.4 & -0.4 & -0.4 & 0.6\\ 0 & 0 & 0& 0& 0 \end{bmatrix}[/Tex] [Tex]1) \begin{bmatrix} 0.6 \\ 0 \end{bmatrix} * \begin{bmatrix} 0.6 &0 \end{bmatrix} = \begin{bmatrix} 0.36 &0 \\ 0 &0 \end{bmatrix} \\\\ 2) \begin{bmatrix} -0.4 \\ 0 \end{bmatrix} * \begin{bmatrix} -0.4 &0 \end{bmatrix} = \begin{bmatrix} 0.16 &0 \\ 0 &0 \end{bmatrix} \\\\ 3) \begin{bmatrix} -0.4 \\ 0 \end{bmatrix} * \begin{bmatrix} -0.4 &0 \end{bmatrix} = \begin{bmatrix} 0.16 &0 \\ 0 &0 \end{bmatrix} \\\\ 4) \begin{bmatrix} -0.4 \\ 0 \end{bmatrix} * \begin{bmatrix} -0.4 &0 \end{bmatrix} = \begin{bmatrix} 0.16 &0 \\ 0 &0 \end{bmatrix} \\\\ 5) \begin{bmatrix} 0.6 \\ 0 \end{bmatrix} * \begin{bmatrix} 0.6 &0 \end{bmatrix} = \begin{bmatrix} 0.36 &0 \\ 0 &0 \end{bmatrix} \\\\[/Tex] Averaging values from 1,2,3,4 and 5. [Tex]matrix_{00} = \frac{ 0.36+0.16+0.16+0.16+0.36}{5}\\ =\frac{1.2}{5}\\ = 0.24\\\\ matrix_{01} = \frac{ 0+0+0+0+0}{5}\\ = 0\\\\ matrix_{10} = \frac{ 0+0+0+0+0}{5}\\ = 0\\\\ matrix_{11} = \frac{ 0+0+0+0+0}{5}\\ = 0\\\\[/Tex] Therefore S1 is : [Tex]S_1 = \begin{bmatrix} 0.24 &0 \\ 0 &0 \end{bmatrix}[/Tex] Class specific covariance for the second class : [Tex](X2-m_2) = \begin{bmatrix} 0.6 & -2.4 & 0.6 & -0.4 & 1.6\\ 2.4 & 0.4 & -2.6& -0.6& 0.4 \end{bmatrix}[/Tex] [Tex]1) \begin{bmatrix} 0.6 \\ 2.4 \end{bmatrix} * \begin{bmatrix} 0.6 &2.4 \end{bmatrix} = \begin{bmatrix} 0.36 &1.44 \\ 1.44 &05.76 \end{bmatrix} \\\\ 2) \begin{bmatrix} -2.4 \\ 0.4 \end{bmatrix} * \begin{bmatrix} -2.4 &0.4 \end{bmatrix} = \begin{bmatrix} 5.76 &-0.96 \\ -0.96 &0.16 \end{bmatrix} \\\\ 3) \begin{bmatrix} 0.6 \\ -2.6 \end{bmatrix} * \begin{bmatrix} 0.6 &-2.6 \end{bmatrix} = \begin{bmatrix} 0.36 &-1.56 \\ 1.56 &6.76 \end{bmatrix} \\\\ 4) \begin{bmatrix} -0.4 \\ -0.6 \end{bmatrix} * \begin{bmatrix} -0.4 &-0.6 \end{bmatrix} = \begin{bmatrix} 0.16 &0.24 \\ 0.24 &0.36 \end{bmatrix} \\\\ 5) \begin{bmatrix} 1.6 \\ 0.4 \end{bmatrix} * \begin{bmatrix} 1.6 &0.4 \end{bmatrix} = \begin{bmatrix} 2.56 &0.64 \\ 0.64 &0.16 \end{bmatrix} \\\\[/Tex] Averaging values from 1,2,3,4 and 5 [Tex]matrix_{00} = \frac{ 0.36+5.76+0.36+0.16+2.56}{5}\\ =\frac{9.2}{5}\\ = 1.84\\\\ matrix_{01} = \frac{ 1.44-0.96-1.56+0.24+0.64}{5}\\ =\frac{-0.2}{5}\\ = -0.04\\\\ matrix_{10} = \frac{ 1.44-0.96-1.56+0.24+0.64}{5}\\ =\frac{-0.2}{5}\\ = -0.04\\\\ matrix_{11} = \frac{ 5.76+0.16+6.76+0.36+0.16}{5}\\ =\frac{13.2}{5}\\ = 2.64\\\\[/Tex] Therefore S2 is : [Tex]S_2 = \begin{bmatrix} 1.84 &-0.04 \\ -0.04 &2.64 \end{bmatrix}[/Tex] Within class scatter matrix Sw : SW = S1 + S2 [Tex]S_W= \begin{bmatrix} 0.24 &0 \\ 0 &0 \end{bmatrix} + \begin{bmatrix} 1.84 &-0.04 \\ -0.04 &2.64 \end{bmatrix} \\\\ =\begin{bmatrix} 2.08 &-0.04 \\ -0.04 &2.64 \end{bmatrix}[/Tex] Between class scatter matrix SB : [Tex]S_B = (m_1 – m_2) * (m_1 – m_2)^{T}\\\\ S_B = \begin{bmatrix} 7 & 5.6 \end{bmatrix} * \begin{bmatrix} 7 \\5.6 \end{bmatrix} \\\\ =\begin{bmatrix} 49 &37.2 \\ 37.2 &31.36 \end{bmatrix}[/Tex] Total scatter matrix : ST = SB + SW [Tex]S_w =\begin{bmatrix} 49 &37.2 \\ 37.2 &31.36 \end{bmatrix} + \begin{bmatrix} 2.08 &-0.04 \\ -0.04 &2.64 \end{bmatrix} \\ =\begin{bmatrix} 51.08 & 37.16 \\ 37.16 &34 \end{bmatrix}[/Tex] Therefore we have calculated between class scatter matrix and within class scatter matrix for the available data points. We make use of these computations in feature extraction , where the main goal is to increase the distance between the class in the projection of points and decrease the distance between the points within the class in the projection. Here we aim at generating data projection at the required dimension. Conclusion – Scatter MatrixScatter matrices are invaluable tools in engineering mathematics and data science, facilitating the exploration and analysis of complex datasets. They aid in identifying correlations, detecting outliers, and selecting features, ultimately enhancing the data modeling process. Problem Solving on Scatter Matrix – FAQsWhat is a scatter matrix used for?
How does a scatter matrix help in feature selection?
Can scatter matrices detect non-linear relationships?
Why are scatter matrices useful in outlier detection?
|
Reffered: https://www.geeksforgeeks.org
Engineering Mathematics |
Type: | Geek |
Category: | Coding |
Sub Category: | Tutorial |
Uploaded by: | Admin |
Views: | 14 |