Horje
Count of pairs in Array such that bitwise AND of XOR of pair and X is 0

Given an array arr[] consisting of N positive integers and a positive integer X, the task is to find the number of pairs (i, j) such that i < j and (arr[i]^arr[j] )&X is 0.

Examples:

Input: arr[] = {1, 3, 4, 2}, X = 2 
Output: 2
Explanation:
Following are the possible pairs from the given array:

  1. (0, 2): The value of (arr[0]^arr[2])&X is (1^4)&2 = 0.
  2. (1, 3): The value of (arr[1]^arr[3])&X is (3^2)&2 = 0.

Therefore, the total count of pairs is 2.

Input: arr[] = {3, 2, 5, 4, 6, 7}, X = 6
Output: 3

Naive Approach: The simple approach to solve the given problem is to generate all possible pairs of the given array and count those pairs (i, j) that satisfy the given criteria i.e., i < j and (arr[i]^arr[j] )&X is 0.. After checking for all the pairs, print the total count obtained.

Below is the implementation of the above approach:

C++

// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the number of pairs
// that satisfy the given criteria i.e.,
// i < j and (arr[i]^arr[j] )&X is 0
int countOfPairs(int arr[], int N, int X)
{
    // Stores the resultant count
    // of pairs
    int count = 0;
 
    // Iterate over the range [0, N)
    for (int i = 0; i < N - 1; i++) {
 
        // Iterate over the range
        for (int j = i + 1; j < N; j++) {
 
            // Check for the given
            // condition
            if (((arr[i] ^ arr[j]) & X) == 0)
                count++;
        }
    }
 
    // Return the resultant count
    return count;
}
 
// Driver Code
int main()
{
    int arr[] = { 3, 2, 5, 4, 6, 7 };
    int X = 6;
    int N = sizeof(arr) / sizeof(arr[0]);
    cout << countOfPairs(arr, N, X);
 
    return 0;
}

Java

// Java program for the above approach
class GFG
{
 
// Function to find the number of pairs
// that satisfy the given criteria i.e.,
// i < j and (arr[i]^arr[j] )&X is 0
public static int countOfPairs(int arr[], int N, int X)
{
    // Stores the resultant count
    // of pairs
    int count = 0;
 
    // Iterate over the range [0, N)
    for (int i = 0; i < N - 1; i++) {
 
        // Iterate over the range
        for (int j = i + 1; j < N; j++) {
 
            // Check for the given
            // condition
            if (((arr[i] ^ arr[j]) & X) == 0)
                count++;
        }
    }
 
    // Return the resultant count
    return count;
}
 
// Driver Code
public static void main(String args[])
{
    int arr[] = { 3, 2, 5, 4, 6, 7 };
    int X = 6;
    int N = arr.length;
    System.out.println(countOfPairs(arr, N, X));
}
}
 
// This code is contributed by gfgking.

Python3

# Python3 program for the above approach
 
# Function to find the number of pairs
# that satisfy the given criteria i.e.,
# i < j and (arr[i]^arr[j] )&X is 0
def countOfPairs(arr, N, X):
     
    # Stores the resultant count
    # of pairs
    count = 0
 
    # Iterate over the range [0, N)
    for i in range(N - 1):
         
        # Iterate over the range
        for j in range(i + 1, N):
             
            # Check for the given
            # condition
            if (((arr[i] ^ arr[j]) & X) == 0):
                count += 1
 
    # Return the resultant count
    return count
 
# Driver Code
if __name__ == '__main__':
     
    arr = [ 3, 2, 5, 4, 6, 7 ]
    X = 6
    N = len(arr)
     
    print(countOfPairs(arr, N, X))
 
# This code is contributed by mohit kumar 29

C#

// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to find the number of pairs
// that satisfy the given criteria i.e.,
// i < j and (arr[i]^arr[j] )&X is 0
static int countOfPairs(int []arr, int N, int X)
{
     
    // Stores the resultant count
    // of pairs
    int count = 0;
 
    // Iterate over the range [0, N)
    for(int i = 0; i < N - 1; i++)
    {
         
        // Iterate over the range
        for(int j = i + 1; j < N; j++)
        {
             
            // Check for the given
            // condition
            if (((arr[i] ^ arr[j]) & X) == 0)
                count++;
        }
    }
 
    // Return the resultant count
    return count;
}
 
// Driver Code
public static void Main()
{
    int []arr = { 3, 2, 5, 4, 6, 7 };
    int X = 6;
    int N = arr.Length;
     
    Console.Write(countOfPairs(arr, N, X));
}
}
 
// This code is contributed by SURENDRA_GANGWAR

Javascript

<script>
       // JavaScript program for the above approach
 
       // Function to find the number of pairs
       // that satisfy the given criteria i.e.,
       // i < j and (arr[i]^arr[j] )&X is 0
       function countOfPairs(arr, N, X)
       {
        
           // Stores the resultant count
           // of pairs
           let count = 0;
 
           // Iterate over the range [0, N)
           for (let i = 0; i < N - 1; i++)
           {
 
               // Iterate over the range
               for (let j = i + 1; j < N; j++)
               {
 
                   // Check for the given
                   // condition
                   if (((arr[i] ^ arr[j]) & X) == 0)
                       count++;
               }
           }
 
           // Return the resultant count
           return count;
       }
 
       // Driver Code
       let arr = [3, 2, 5, 4, 6, 7];
       let X = 6;
       let N = arr.length;
       document.write(countOfPairs(arr, N, X));
 
   // This code is contributed by Potta Lokesh
 
   </script>

Output: 

3

 

Time Complexity: O(N2) 
Auxiliary Space: O(1)

Efficient Approach: The above approach can also be optimized by observing the given equation. So, to perform (A[i]^A[j]) & X == 0, then unset bits in the answer of (A[i]^A[j]) at the same position where the X has set bits in its binary representation is required.

For Example, If X = 6  => 110, so to make (answer & X) == 0 where answer = A[i]^A[j], the answer should be 001 or 000. So to get the 0 bit in the answer (in the same position as the set bit the X has), it is required to have the same bit in A[i] and A[j] at that position as the Bitwise XOR of the same bit (1^1 = 0 and 0^0 = 0) gives 0.

By closely looking at the relation between X and A[i] and A[j], it is found that X&A[i] == X&A[j]. Therefore, the idea is to find the frequency of the array elements having value arr[i]&X and any two numbers with the same value can be made as a pair. Follow the steps below to solve the problem:

  • Initialize an unordered map, say M to store the count of numbers having a particular value arr[i]^X.
  • Iterate over the range [0, N] using the variable i and increase the count of the value of arr[i]&X in the unordered map M.
  • Initialize the variable count as 0 to store the resultant count of pairs.
  • Iterate over the map M using the variable m and add the value of (m.second)*(m.second – 1)/2 to the variable count.
  • After completing the above steps, print the value of count as the result.

Below is the implementation of the above approach:

C++

// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the number of pairs
// that satisfy the given criteria i.e.,
// i < j and (arr[i]^arr[j] )&X is 0
int countOfPairs(int arr[], int N, int X)
{
    // Stores the resultant count
    // of pairs
    int count = 0;
 
    // Initializing the map M
    unordered_map<int, int> M;
 
    // Populating the map
    for (int i = 0; i < N; i++) {
        M[(arr[i] & X)]++;
    }
 
    // Count number of pairs for every
    // element in map using mathematical
    // concept of combination
    for (auto m : M) {
        int p = m.second;
 
        // As nC2 = n*(n-1)/2
        count += p * (p - 1) / 2;
    }
 
    // Return the resultant count
    return count;
}
 
// Driver Code
int main()
{
    int arr[] = { 3, 2, 5, 4, 6, 7 };
    int X = 6;
    int N = sizeof(arr) / sizeof(arr[0]);
    cout << countOfPairs(arr, N, X);
    return 0;
}

Java

// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to find the number of pairs
// that satisfy the given criteria i.e.,
// i < j and (arr[i]^arr[j] )&X is 0
static int countOfPairs(int[] arr, int N, int X)
{
     
    // Stores the resultant count
    // of pairs
    int count = 0;
 
    // Initializing the map M
    HashMap<Integer,
            Integer> M = new HashMap<Integer,
                                     Integer>();
 
    // Populating the map
    for(int i = 0; i < N; i++)
    {
        if (M.containsKey(arr[i] & X))
            M.put((arr[i] & X),
             M.get(arr[i] & X) + 1);
        else
            M.put(arr[i] & X, 1);
    }
 
    // Count number of pairs for every
    // element in map using mathematical
    // concept of combination
    for(Integer entry : M.keySet())
    {
        int p = M.get(entry);
 
        // As nC2 = n*(n-1)/2
        count += p * (p - 1) / 2;
    }
 
    // Return the resultant count
    return count;
}
 
// Driver Code
public static void main(String[] args)
{
    int[] arr = { 3, 2, 5, 4, 6, 7 };
    int X = 6;
    int N = arr.length;
     
    System.out.print(countOfPairs(arr, N, X));
}
}
 
// This code is contributed by ukasp

Python3

# Python3 program for the above approach
 
# Function to find the number of pairs
# that satisfy the given criteria i.e.,
# i < j and (arr[i]^arr[j] )&X is 0
def countOfPairs(arr, N, X):
     
    # Stores the resultant count
    # of pairs
    count = 0
 
    # Initialize the dictionary M
    M = dict()
     
    # Populate the map
    for i in range(0, N):
        k = arr[i] & X
        if k in M:
            M[k] += 1
        else:
            M[k] = 1
             
    # Count number of pairs for every
    # element in map using mathematical
    # concept of combination
    for m in M.keys():
        p = M[m]
         
        # As nC2 = n*(n-1)/2
        count += p * (p - 1) // 2
         
    # Return the resultant count
    return count
 
# Driver Code
if __name__ == '__main__':
 
    arr = [ 3, 2, 5, 4, 6, 7 ]
    X = 6
    N = len(arr)
 
    print(countOfPairs(arr, N, X))
 
# This code is contributed by MuskanKalra1

C#

// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to find the number of pairs
// that satisfy the given criteria i.e.,
// i < j and (arr[i]^arr[j] )&X is 0
static int countOfPairs(int []arr, int N, int X)
{
   
    // Stores the resultant count
    // of pairs
    int count = 0;
 
    // Initializing the map M
    Dictionary<int,int> M = new Dictionary<int,int>();
 
    // Populating the map
    for (int i = 0; i < N; i++) {
        if(M.ContainsKey(arr[i] & X))
           M[(arr[i] & X)]++;
        else
           M.Add(arr[i] & X,1);
    }
 
    // Count number of pairs for every
    // element in map using mathematical
    // concept of combination
    foreach(KeyValuePair<int, int> entry in M)
    {
         int p = entry.Value;
 
        // As nC2 = n*(n-1)/2
        count += p * (p - 1) / 2;
    }
 
    // Return the resultant count
    return count;
}
 
// Driver Code
public static void Main()
{
    int []arr = { 3, 2, 5, 4, 6, 7 };
    int X = 6;
    int N = arr.Length;
    Console.Write(countOfPairs(arr, N, X));
}
}
 
// This code is contributed by ipg2016107.

Javascript

<script>
// Javascript program for the above approach
 
// Function to find the number of pairs
// that satisfy the given criteria i.e.,
// i < j and (arr[i]^arr[j] )&X is 0
function countOfPairs(arr, N, X)
{
 
  // Stores the resultant count
  // of pairs
  let count = 0;
 
  // Initializing the map M
  let M = new Map();
 
  // Populating the map
  for (let i = 0; i < N; i++) {
    if (M.has(arr[i] & X)) {
      M.set(arr[i] & X, M.get(arr[i] & X) + 1);
    } else {
      M.set(arr[i] & X, 1);
    }
  }
 
  // Count number of pairs for every
  // element in map using mathematical
  // concept of combination
  for (let m of M) {
    let p = m[1];
 
    // As nC2 = n*(n-1)/2
    count += (p * (p - 1)) / 2;
  }
 
  // Return the resultant count
  return count;
}
 
// Driver Code
let arr = [3, 2, 5, 4, 6, 7];
let X = 6;
let N = arr.length;
document.write(countOfPairs(arr, N, X));
 
// This code is contributed by gfgking.
</script>

Output: 

3

 

Time Complexity: O(N) 
Auxiliary Space: O(N)




Reffered: https://www.geeksforgeeks.org


Arrays

Related
Minimum count of elements to be inserted in Array to form all values in [1, K] using subset sum Minimum count of elements to be inserted in Array to form all values in [1, K] using subset sum
Sort a nearly sorted (or K sorted) array | Set 2 (Gap method - Shell sort) Sort a nearly sorted (or K sorted) array | Set 2 (Gap method - Shell sort)
Concatenate the Array of elements into a single element Concatenate the Array of elements into a single element
Reduce the given Array of [1, N] by rotating left or right based on given conditions Reduce the given Array of [1, N] by rotating left or right based on given conditions
Maximize the count of adjacent element pairs with even sum by rearranging the Array Maximize the count of adjacent element pairs with even sum by rearranging the Array

Type:
Geek
Category:
Coding
Sub Category:
Tutorial
Uploaded by:
Admin
Views:
7