Horje
Check if a point is inside, outside or on a Hyperbola

Given a hyperbola centered at (h, k), with semi-major axis a, semi-minor axis b, both aligned with the Cartesian plane, the task is to determine if the point (x, y) lies within the area bounded by the hyperbola or not.

Examples: 

Input: h = 0, k = 0, x = 2, y = 1, a = 4, b = 5  
Output: Inside

Input: h = 1, k = 2, x = 200, y = 100, a = 6, b = 5
Output: Outside

Approach: The given problem can be solved by solving the equation of hyperbola mentioned below, for the given point (x, y):

  \frac{(x-h)^2}{a^2}  - \frac{(y-k)^2}{b^2}

Based on the evaluated value of the above equation, the output of the program is as follows:

  • Less than 1: The point lies inside the hyperbola.
  • Equal to 1: The point lies on the hyperbola
  • Greater than 1: The point lies outside the hyperbola.

Below is the implementation of the above approach: 

C++

// C++ program for the
// above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if the point
// (x, y) lies inside, on or
// outside the given hyperbola
void checkpoint(int h, int k, int x,
                int y, int a, int b)
{
 
    // Stores the value of the equation
    int p = (pow((x - h), 2) / pow(a, 2))
            - (pow((y - k), 2) / pow(b, 2));
 
    // Generate output based on value of p
    if (p > 1) {
        cout << "Outside";
    }
    else if (p == 1) {
        cout << "On the Hyperbola";
    }
    else {
        cout << "Inside";
    }
}
 
// Driver Code
int main()
{
    int h = 0, k = 0, x = 2;
    int y = 1, a = 4, b = 5;
 
    checkpoint(h, k, x, y, a, b);
 
    return 0;
}

Java

// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG{
 
// Function to check if the point
// (x, y) lies inside, on or
// outside the given hyperbola
static void checkpoint(int h, int k, int x,
                       int y, int a, int b)
{
     
    // Stores the value of the equation
    int p = (int)(Math.pow((x - h), 2) / Math.pow(a, 2)) -
            (int)(Math.pow((y - k), 2) / Math.pow(b, 2));
 
    // Generate output based on value of p
    if (p > 1)
    {
        System.out.println("Outside");
    }
    else if (p == 1)
    {
        System.out.println("On the Hyperbola");
    }
    else
    {
        System.out.println("Inside");
    }
}
 
// Driver Code
public static void main(String[] args)
{
    int h = 0, k = 0, x = 2;
    int y = 1, a = 4, b = 5;
 
    checkpoint(h, k, x, y, a, b);
}
}
 
// This code is contributed by Kingash

Python3

# Python3 program for the above approach
from math import pow
 
# Function to check if the point
# (x, y) lies inside, on or
# outside the given hyperbola
def checkpoint(h, k, x, y, a, b):
 
    # Stores the value of the equation
    p = ((pow((x - h), 2) // pow(a, 2)) -
         (pow((y - k), 2) // pow(b, 2)))
 
    # Generate output based on value of p
    if (p > 1):
        print("Outside")
     
    elif (p == 1):
        print("On the Hyperbola");
     
    else:
        print("Inside")
 
# Driver Code
if __name__ == "__main__":
 
    h = 0
    k = 0
    x = 2
    y = 1
    a = 4
    b = 5
 
    checkpoint(h, k, x, y, a, b)
 
# This code is contributed by AnkThon

C#

// C# program for the above approach
using System;
 
class GFG{
 
// Function to check if the point
// (x, y) lies inside, on or
// outside the given hyperbola
static void checkpoint(int h, int k, int x,
                       int y, int a, int b)
{
     
    // Stores the value of the equation
    int p = (int)(Math.Pow((x - h), 2) / Math.Pow(a, 2)) -
            (int)(Math.Pow((y - k), 2) / Math.Pow(b, 2));
 
    // Generate output based on value of p
    if (p > 1)
    {
        Console.WriteLine("Outside");
    }
    else if (p == 1)
    {
        Console.WriteLine("On the Hyperbola");
    }
    else
    {
        Console.WriteLine("Inside");
    }
}
 
// Driver Code
public static void Main(string[] args)
{
    int h = 0, k = 0, x = 2;
    int y = 1, a = 4, b = 5;
 
    checkpoint(h, k, x, y, a, b);
}
}
 
// This code is contributed by ukasp

Javascript

<script>
 
// JavaScript program for the above approach
 
// Function to check if the point
// (x, y) lies inside, on or
// outside the given hyperbola
function checkpoint(h, k, x, y, a, b)
{
     
    // Stores the value of the equation
    p = ((Math.pow((x - h), 2) / Math.pow(a, 2)) -
         (Math.pow((y - k), 2) / Math.pow(b, 2)))
 
    // Generate output based on value of p
    if (p > 1)
        console.log("Outside");
     
    else if (p == 1)
        console.log("On the Hyperbola");
     
    else
        console.log("Inside");
}
 
// Driver Code
function main()
{
    var h = 0;
    var k = 0;
    var x = 2;
    var y = 1;
    var a = 4;
    var b = 5;
     
    checkpoint(h, k, x, y, a, b);
}
 
// main function call
main()
 
// This code is contributed by AnkThon
 
</script>

Output: 
Inside

 

Time Complexity: O(1)
Auxiliary Space: O(1)


 




Reffered: https://www.geeksforgeeks.org


Geometric

Related
Minimum area of the triangle formed by any tangent to an ellipse with the coordinate axes Minimum area of the triangle formed by any tangent to an ellipse with the coordinate axes
Maximize count of intersecting line segments Maximize count of intersecting line segments
Program to calculate angle between two N-Dimensional vectors Program to calculate angle between two N-Dimensional vectors
Program to find Length of Latus Rectum of an Ellipse Program to find Length of Latus Rectum of an Ellipse
Number of points lying inside a rectangle as well as a triangle Number of points lying inside a rectangle as well as a triangle

Type:
Geek
Category:
Coding
Sub Category:
Tutorial
Uploaded by:
Admin
Views:
13