Horje
Minimum possible value T such that at most D Partitions of the Array having at most sum T is possible

Given an array arr[] consisting of N integers and an integer D, the task is to find the least integer T such that the entire array can be partitioned into at most D subarrays from the given array with sum atmost T.

Examples:

Input: D = 5, arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 
Output: 15 
Explanation: 
If T = 15, then 5 subarrays {{1, 2, 3, 4, 5}, {6, 7}, {8}, {9}, {10}}

Input: D = 2, arr[] = {1, 1, 1, 1, 1} 
Output:
Explanation: 
If T = 3, then the 2 partitions are {{1, 1, 1}, {1, 1}}

Naive Approach: The idea is to check for all possible values of T in the range [max(element), sum(element)] whether it is possible to have at most D partition. 

Time Complexity: O( N*R )
Auxiliary Space: O(1)

Efficient Approach: The idea is to use Binary search to optimize the above approach. Follow the steps below to solve the problem:

  • Consider T in the range R = [ max(element), sum(element) ].
  • If median T can generate at most D partitions, then check for a median lesser than T.
  • Otherwise, check for a median greater than the current median T.
  • Return the possible value of T at the end.

Below is the implementation of the above approach:

C++

// C++ Program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if the array
// can be partitioned into atmost d
// subarray with sum atmost T
bool possible(int T, int arr[], int n, int d)
{
    // Initial partition
    int partition = 1;
 
    // Current sum
    int total = 0;
 
    for (int i = 0; i < n; i++) {
 
        total = total + arr[i];
 
        // If current sum exceeds T
        if (total > T) {
 
            // Create a new partition
            partition = partition + 1;
            total = arr[i];
 
            // If count of partitions
            // exceed d
            if (partition > d) {
                return false;
            }
        }
    }
 
    return true;
}
 
// Function to find the minimum
// possible value of T
void calcT(int n, int d, int arr[])
{
    // Stores the maximum and
    // total sum of elements
    int mx = -1, sum = 0;
 
    for (int i = 0; i < n; i++) {
 
        // Maximum element
        mx = max(mx, arr[i]);
 
        // Sum of all elements
        sum = sum + arr[i];
    }
 
    int lb = mx;
    int ub = sum;
 
    while (lb < ub) {
 
        // Calculate median  T
        int T_mid = lb + (ub - lb) / 2;
 
        // If atmost D partitions possible
        if (possible(T_mid, arr, n, d) == true) {
 
            // Check for smaller T
            ub = T_mid;
        }
 
        // Otherwise
        else {
 
            // Check for larger T
            lb = T_mid + 1;
        }
    }
 
    // Print the minimum T required
    cout << lb << endl;
}
 
// Driver Code
int main()
{
    int d = 2;
    int arr[] = { 1, 1, 1, 1, 1 };
 
    int n = sizeof arr / sizeof arr[0];
    // Function call
    calcT(n, d, arr);
 
    return 0;
}

Java

// Java program for the above approach
import java.util.*;
import java.io.*;
 
class GFG{
     
// Function to check if the array
// can be partitioned into atmost d
// subarray with sum atmost T
public static boolean possible(int T, int arr[],
                               int n, int d)
{
     
    // Initial partition
    int partition = 1;
 
    // Current sum
    int total = 0;
 
    for(int i = 0; i < n; i++)
    {
        total = total + arr[i];
 
        // If current sum exceeds T
        if (total > T)
        {
             
            // Create a new partition
            partition = partition + 1;
            total = arr[i];
 
            // If count of partitions
            // exceed d
            if (partition > d)
            {
                return false;
            }
        }
    }
    return true;
}
 
// Function to find the minimum
// possible value of T
public static void calcT(int n, int d,
                         int arr[])
{
     
    // Stores the maximum and
    // total sum of elements
    int mx = -1, sum = 0;
 
    for(int i = 0; i < n; i++)
    {
         
        // Maximum element
        mx = Math.max(mx, arr[i]);
 
        // Sum of all elements
        sum = sum + arr[i];
    }
 
    int lb = mx;
    int ub = sum;
 
    while (lb < ub)
    {
         
        // Calculate median T
        int T_mid = lb + (ub - lb) / 2;
 
        // If atmost D partitions possible
        if (possible(T_mid, arr, n, d) == true)
        {
             
            // Check for smaller T
            ub = T_mid;
        }
 
        // Otherwise
        else
        {
             
            // Check for larger T
            lb = T_mid + 1;
        }
    }
     
    // Print the minimum T required
    System.out.println(lb);
}
 
// Driver code
public static void main(String args[])
{
    int d = 2;
    int arr[] = { 1, 1, 1, 1, 1 };
 
    int n = arr.length;
     
    // Function call
    calcT(n, d, arr);
}
}
 
// This code is contributed by decoding

Python3

# Python3 program for the above approach
 
# Function to check if the array
# can be partitioned into atmost d
# subarray with sum atmost T
def possible(T, arr, n, d):
     
    # Initial partition
    partition = 1;
 
    # Current sum
    total = 0;
 
    for i in range(n):
        total = total + arr[i];
 
        # If current sum exceeds T
        if (total > T):
 
            # Create a new partition
            partition = partition + 1;
            total = arr[i];
 
            # If count of partitions
            # exceed d
            if (partition > d):
                return False;
 
    return True;
 
# Function to find the minimum
# possible value of T
def calcT(n, d, arr):
     
    # Stores the maximum and
    # total sum of elements
    mx = -1; sum = 0;
 
    for i in range(n):
         
        # Maximum element
        mx = max(mx, arr[i]);
 
        # Sum of all elements
        sum = sum + arr[i];
 
    lb = mx;
    ub = sum;
 
    while (lb < ub):
 
        # Calculate median T
        T_mid = lb + (ub - lb) // 2;
 
        # If atmost D partitions possible
        if (possible(T_mid, arr, n, d) == True):
 
            # Check for smaller T
            ub = T_mid;
 
        # Otherwise
        else:
 
            # Check for larger T
            lb = T_mid + 1;
 
    # Print the minimum T required
    print(lb);
 
# Driver code
if __name__ == '__main__':
     
    d = 2;
    arr = [ 1, 1, 1, 1, 1 ];
 
    n = len(arr);
 
    # Function call
    calcT(n, d, arr);
 
# This code is contributed by Rajput-Ji

C#

// C# program for the above approach
using System;
 
class GFG{
     
// Function to check if the array
// can be partitioned into atmost d
// subarray with sum atmost T
public static bool possible(int T, int []arr,
                            int n, int d)
{
     
    // Initial partition
    int partition = 1;
 
    // Current sum
    int total = 0;
 
    for(int i = 0; i < n; i++)
    {
        total = total + arr[i];
 
        // If current sum exceeds T
        if (total > T)
        {
             
            // Create a new partition
            partition = partition + 1;
            total = arr[i];
 
            // If count of partitions
            // exceed d
            if (partition > d)
            {
                return false;
            }
        }
    }
    return true;
}
 
// Function to find the minimum
// possible value of T
public static void calcT(int n, int d,
                         int []arr)
{
     
    // Stores the maximum and
    // total sum of elements
    int mx = -1, sum = 0;
 
    for(int i = 0; i < n; i++)
    {
         
        // Maximum element
        mx = Math.Max(mx, arr[i]);
 
        // Sum of all elements
        sum = sum + arr[i];
    }
 
    int lb = mx;
    int ub = sum;
 
    while (lb < ub)
    {
         
        // Calculate median T
        int T_mid = lb + (ub - lb) / 2;
 
        // If atmost D partitions possible
        if (possible(T_mid, arr, n, d) == true)
        {
             
            // Check for smaller T
            ub = T_mid;
        }
 
        // Otherwise
        else
        {
             
            // Check for larger T
            lb = T_mid + 1;
        }
    }
     
    // Print the minimum T required
    Console.WriteLine(lb);
}
 
// Driver code
public static void Main(String []args)
{
    int d = 2;
    int []arr = { 1, 1, 1, 1, 1 };
 
    int n = arr.Length;
     
    // Function call
    calcT(n, d, arr);
}
}
 
// This code is contributed by 29AjayKumar

Javascript

<script>
// JavaScript program for the
// above approach
  
// Function to check if the array
// can be partitioned into atmost d
// subarray with sum atmost T
function possible(T, arr,
                               n, d)
{
       
    // Initial partition
    let partition = 1;
   
    // Current sum
    let total = 0;
   
    for(let i = 0; i < n; i++)
    {
        total = total + arr[i];
   
        // If current sum exceeds T
        if (total > T)
        {
               
            // Create a new partition
            partition = partition + 1;
            total = arr[i];
   
            // If count of partitions
            // exceed d
            if (partition > d)
            {
                return false;
            }
        }
    }
    return true;
}
   
// Function to find the minimum
// possible value of T
function calcT(n, d, arr)
{
       
    // Stores the maximum and
    // total sum of elements
    let mx = -1, sum = 0;
   
    for(let i = 0; i < n; i++)
    {
           
        // Maximum element
        mx = Math.max(mx, arr[i]);
   
        // Sum of all elements
        sum = sum + arr[i];
    }
   
    let lb = mx;
    let ub = sum;
   
    while (lb < ub)
    {
           
        // Calculate median T
        let T_mid = lb + (ub - lb) / 2;
   
        // If atmost D partitions possible
        if (possible(T_mid, arr, n, d) == true)
        {
               
            // Check for smaller T
            ub = T_mid;
        }
   
        // Otherwise
        else
        {
               
            // Check for larger T
            lb = T_mid + 1;
        }
    }
       
    // Print the minimum T required
    document.write(lb);
}
 
// Driver Code
 
    let d = 2;
    let arr = [ 1, 1, 1, 1, 1 ];
   
    let n = arr.length;
       
    // Function call
    calcT(n, d, arr);
 
</script>

Output

3

Time complexity: O( N*log(sum) ) 
Auxiliary Space: O(1)
 




Reffered: https://www.geeksforgeeks.org


Searching

Related
Check if an Array is made up of Subarrays of continuous repetitions of every distinct element Check if an Array is made up of Subarrays of continuous repetitions of every distinct element
Count of substrings consisting of even number of vowels Count of substrings consisting of even number of vowels
Maximum of minimum difference of all pairs from subsequences of given size Maximum of minimum difference of all pairs from subsequences of given size
Check if ceil of number divided by power of two exist in sorted array Check if ceil of number divided by power of two exist in sorted array
Check if a given number is a Perfect square using Binary Search Check if a given number is a Perfect square using Binary Search

Type:
Geek
Category:
Coding
Sub Category:
Tutorial
Uploaded by:
Admin
Views:
13