Horje
Print all proper fractions with denominators less than equal to N

Given an integer N, the task is to print all proper fractions such that the denominator is less than or equal to N. 

Proper Fractions: A fraction is said to be a proper fraction if the numerator is less than the denominator. 
 

Examples:  

Input: N = 3 
Output: 1/2, 1/3, 2/3

Input: N = 4 
Output: 1/2, 1/3, 1/4, 2/3, 3/4 

Approach: 
Traverse all numerators over [1, N-1] and, for each of them, traverse over all denominators in the range [numerator+1, N] and check if the numerator and denominator are coprime or not. If found to be coprime, then print the fraction.

Below is the implementation of the above approach: 

C++14

// C++ program to implement the
// above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print all
// proper fractions
void printFractions(int n)
{
    for (int i = 1; i < n; i++) {
        for (int j = i + 1; j <= n; j++) {
 
            // If the numerator and the
            // denominator are coprime
            if (__gcd(i, j) == 1) {
 
                string a = to_string(i);
                string b = to_string(j);
 
                cout << a + "" + b << ", ";
            }
        }
    }
}
 
// Driver Code
int main()
{
    int n = 3;
    printFractions(n);
    return 0;
}

Java

// Java program to implement the
// above approach
class GFG{
 
// Function to print all
// proper fractions
static void printFractions(int n)
{
    for(int i = 1; i < n; i++)
    {
        for(int j = i + 1; j <= n; j++)
        {
             
            // If the numerator and the
            // denominator are coprime
            if (__gcd(i, j) == 1)
            {
                String a = String.valueOf(i);
                String b = String.valueOf(j);
 
                System.out.print(a + "" +
                                 b + ", ");
            }
        }
    }
}
 
static int __gcd(int a, int b)
{
    return b == 0 ? a : __gcd(b, a % b);    
}
 
// Driver code
public static void main(String[] args)
{
    int n = 3;
     
    printFractions(n);
}
}
 
// This code is contributed by 29AjayKumar

Python3

# Python3 program for the
# above approach
 
# Function to print
# all proper functions
def printfractions(n):
   
  for i in range(1, n):
    for j in range(i + 1, n + 1):
       
      # If the numerator and
      # denominator are coprime
      if __gcd(i, j) == 1:
        a = str(i)
        b = str(j)
        print(a + '/' + b, end = ", ")
         
def __gcd(a, b):
   
  if b == 0:
    return a
  else:
    return __gcd(b, a % b)
 
# Driver code
if __name__=='__main__':
   
  n = 3
  printfractions(n)
 
# This code is contributed by virusbuddah_

C#

// C# program to implement the
// above approach
using System;
 
class GFG{
 
// Function to print all
// proper fractions
static void printFractions(int n)
{
    for(int i = 1; i < n; i++)
    {
        for(int j = i + 1; j <= n; j++)
        {
             
            // If the numerator and the
            // denominator are coprime
            if (__gcd(i, j) == 1)
            {
                string a = i.ToString();
                string b = j.ToString();
 
                Console.Write(a + "" +
                              b + ", ");
            }
        }
    }
}
 
static int __gcd(int a, int b)
{
    return b == 0 ? a : __gcd(b, a % b);    
}
 
// Driver code
public static void Main(string[] args)
{
    int n = 3;
     
    printFractions(n);
}
}
 
// This code is contributed by rutvik_56

Javascript

<script>
// Javascript program for the above approach
  
// Function to print all proper functions
const printFractions = (n) => {
  for (var i = 1; i < n; i++) {
      for (var j = i + 1; j <= n; j++) {
       
      // If the numerator and denominator are coprime
       
      if(__gcd(i, j) == 1){
        let a = `${i}`;
        let b = `${j}`;
        document.write(`${a}/${b}, `)
      }
    }
  }
}
 
const __gcd = (a, b) => {
  if(b == 0){
    return a;
  }else{
    return __gcd(b, a % b);
  }
}
 
// Driver code
let n = 3;
printFractions(n);
 
// This article is contributed by _saurabh_jaiswal
</script>

Output: 

1/2, 1/3, 2/3,

 

Time Complexity: O(N2 log N)
Auxiliary Space: O(1)
 




Reffered: https://www.geeksforgeeks.org


Mathematical

Related
Longest subarray with odd product Longest subarray with odd product
Find sum of exponents of prime factors of numbers 1 to N Find sum of exponents of prime factors of numbers 1 to N
Count of unique digits in a given number N Count of unique digits in a given number N
Maximum number of objects that can be created as per given conditions Maximum number of objects that can be created as per given conditions
Print all numbers in given range having digits in strictly increasing order Print all numbers in given range having digits in strictly increasing order

Type:
Geek
Category:
Coding
Sub Category:
Tutorial
Uploaded by:
Admin
Views:
9