Horje
Check if it is possible to create a polygon with a given angle

Given an angle a    where, 1\le a< 180    . The task is to check whether it is possible to make a regular polygon with all of its interior angle equal to a    . If possible then print “YES”, otherwise print “NO” (without quotes). 
Examples: 
 

Input: angle = 90
Output: YES
Polygons with sides 4 is
possible with angle 90 degrees.

Input: angle = 30
Output: NO


 


Approach: The Interior angle is defined as the angle between any two adjacent sides of a regular polygon.
It is given by   \;Interior\;angle = \frac{180 \times (n-2)}{n}\;      where, n is the number of sides in the polygon.
This can be written as   \;a = \frac{180 \times (n-2)}{n}\;    .
On rearranging terms we get,   \;n = \frac{360}{180 - a}\;    .
Thus, if n is an Integer the answer is “YES” otherwise, answer is “NO”.
Below is the implementation of the above approach: 
 

C++

// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check whether it is possible
// to make a regular polygon with a given angle.
void makePolygon(float a)
{
    // N denotes the number of sides
    // of polygons possible
    float n = 360 / (180 - a);
    if (n == (int)n)
        cout << "YES";
    else
        cout << "NO";
}
 
// Driver code
int main()
{
    float a = 90;
 
    // function to print the required answer
    makePolygon(a);
 
    return 0;
}

Java

class GFG
{
// Function to check whether
// it is possible to make a
// regular polygon with a given angle.
static void makePolygon(double a)
{
    // N denotes the number of
    // sides of polygons possible
    double n = 360 / (180 - a);
    if (n == (int)n)
        System.out.println("YES");
    else
        System.out.println("NO");
}
 
// Driver code
public static void main (String[] args)
{
    double a = 90;
 
    // function to print
    // the required answer
    makePolygon(a);
}
}
 
// This code is contributed by Bilal

Python3

# Python 3 implementation
# of above approach
 
# Function to check whether
# it is possible to make a
# regular polygon with a
# given angle.
def makePolygon(a) :
 
    # N denotes the number of sides
    # of polygons possible
    n = 360 / (180 - a)
 
    if n == int(n) :
        print("YES")
 
    else :
        print("NO")
 
# Driver Code
if __name__ == "__main__" :
    a = 90
 
    # function calling
    makePolygon(a)
     
# This code is contributed
# by ANKITRAI1

C#

// C# implementation of
// above approach
using System;
 
class GFG
{
// Function to check whether
// it is possible to make a
// regular polygon with a
// given angle.
static void makePolygon(double a)
{
    // N denotes the number of
    // sides of polygons possible
    double n = 360 / (180 - a);
    if (n == (int)n)
        Console.WriteLine("YES");
    else
        Console.WriteLine("NO");
}
 
// Driver code
static void Main()
{
    double a = 90;
 
    // function to print
    // the required answer
    makePolygon(a);
}
}
 
// This code is contributed by mits

PHP

<?php
// PHP implementation of above approach
 
// Function to check whether it
// is possible to make a regular
// polygon with a given angle.
function makePolygon($a)
{
    // N denotes the number of
    // sides of polygons possible
    $n = 360 / (180 - $a);
    if ($n == (int)$n)
        echo "YES";
    else
        echo "NO";
}
 
// Driver code
$a = 90;
 
// function to print the
// required answer
makePolygon($a);
 
// This code is contributed
// by ChitraNayal
?>

Javascript

<script>
 
      // JavaScript implementation of above approach
      // Function to check whether it is possible
      // to make a regular polygon with a given angle.
       
      function makePolygon(a)
      {
        // N denotes the number of sides
        // of polygons possible
        var n = parseFloat(360 / (180 - a));
        if (n === parseInt(n))
        document.write("YES");
        else
        document.write("NO");
      }
 
      // Driver code
      var a = 90;
       
      // function to print the required answer
      makePolygon(a);
       
</script>

Output: 
YES

 

Time Complexity: O(1), since there is no loop or recursion.
Auxiliary Space: O(1), since no extra space has been taken.




Reffered: https://www.geeksforgeeks.org


Geometric

Related
Program to check whether 4 points in a 3-D plane are Coplanar Program to check whether 4 points in a 3-D plane are Coplanar
Number of possible pairs of Hypotenuse and Area to form right angled triangle Number of possible pairs of Hypotenuse and Area to form right angled triangle
Intersecting rectangle when bottom-left and top-right corners of two rectangles are given Intersecting rectangle when bottom-left and top-right corners of two rectangles are given
Check if a point lies inside a rectangle | Set-2 Check if a point lies inside a rectangle | Set-2
Distance between two parallel Planes in 3-D Distance between two parallel Planes in 3-D

Type:
Geek
Category:
Coding
Sub Category:
Tutorial
Uploaded by:
Admin
Views:
8