Horje
Python | Pandas.Categorical()

pandas.Categorical(val, categories = None, ordered = None, dtype = None) : It represents a categorical variable. Categorical are a pandas data type that corresponds to the categorical variables in statistics. Such variables take on a fixed and limited number of possible values. For examples – grades, gender, blood group type etc. 
Also, in the case of categorical variables, logical order is not the same as categorical data e.g. “one”, “two”, “three”. But the sorting of these variables uses logical order. 
 

Parameters- val        : [list-like] The values of categorical. 
categories : [index like] Unique categorisation of the categories. 
ordered    : [boolean] If false, then the categorical is treated as unordered. 
dtype      : [CategoricalDtype] an instance. 

Error- ValueError :  If the categories do not validate. 
TypeError  :  If an explicit ordered = True but categorical can't be sorted. 

Return- Categorical variable

Code:
 

Python3

# Python code explaining
# numpy.pandas.Categorical()
 
# importing libraries
import numpy as np
import pandas as pd
 
# Categorical using dtype
c = pd.Series(["a", "b", "d", "a", "d"], dtype ="category")
print ("\nCategorical without pandas.Categorical() : \n", c)
 
 
c1 = pd.Categorical([1, 2, 3, 1, 2, 3])
print ("\n\nc1 : ", c1)
 
c2 = pd.Categorical(['e', 'm', 'f', 'i',
                     'f', 'e', 'h', 'm' ])
print ("\nc2 : ", c2)

Output : 
 

  
 

Python3

# Ordered = True
c3 = pd.Categorical(['e', 'm', 'f', 'i',
                     'f', 'e', 'h', 'm' ], ordered = True)
print ("\nc3 : ", c3)

Output : 
 

  
 

Python3

# Mixed categories
c4 = pd.Categorical(['a', 2, 3, 1, 2, 3])
print ("\nc4 : ", c4)
 
c5 = pd.Categorical(['a', 2, 3, 1, 2, 3], ordered = True)
print ("\nc5 : ", c5)

Output : 
 

  
 

Python3

# using categories attribute
c6 = pd.Categorical([1, 2, 3, 1, 2, 3], categories = [4, 1, 3, 5])
print ("\nc6 : ", c6)
 
print("\n\nSeries : \n", pd.Series(c6))
 
df = pd.DataFrame({"A":[1, 2, 3, 1, 2, 3]})
df["B"] = c6
print ("\n\nDataframe : \n", df)

Output : 
 

 




Reffered: https://www.geeksforgeeks.org


Python

Related
Python | Pandas Categorical DataFrame creation Python | Pandas Categorical DataFrame creation
Why Python is called Dynamically Typed? Why Python is called Dynamically Typed?
numpy.poly1d() in Python numpy.poly1d() in Python
Python | Pandas Series.str.repeat() Python | Pandas Series.str.repeat()
Python | Program to implement Jumbled word game Python | Program to implement Jumbled word game

Type:
Geek
Category:
Coding
Sub Category:
Tutorial
Uploaded by:
Admin
Views:
9