Horje
Münchhausen Number

Given a number N, output all Munchhausen numbers from 1 to n.
Introduction : A Münchhausen number is a number equal to the sum of its digits raised to each digit’s power. It is similar to that of Narcissistic Number.

For example: 
3435 = 33 + 44 + 33 + 55
One can also be considered as Münchhausen Number because when 1 raised to the power 1 is 1 itself.
Since, the number 3435 can be expressed as sum of each digits of the number when each digits of the numbers are raised to power equivalent to the digits itself i.e., ((3 raised to the power 3) + (4 raised to the power 4) + (3 raised to the power 3) + (5 raised to the power 5)) will give output to the same number i.e. 3435, then the number can be called as Münchhausen Number.

Example: 

Input : 500
Output : 1
One is the only Münchhausen Number smaller
than or equal to 500.

Input : 5000
Output : 1  3435
1 and 3435 are the only Münchhausen Numbers smaller
than or equal to 5000.

We precompute i raised to power i for every possible digit i where i varies from 0 to 9. After precomputing these values, we traverse through all digits of every number smaller than equal to n and compute sum of digit raised to power digit.

C++

<?php
// PHP code for Münchhausen Number
 
// pwr[i] is going to store i raised
// to power i.
$pwr = array_fill(0, 10, 0);
 
// Function to check out whether the
// number is Münchhausen Number or not
function isMunchhausen($n)
{
    global $pwr;
    $sm = 0;
    $temp = $n;
 
    while ($temp)
    {
        $sm= $sm + $pwr[($temp % 10)];
        $temp = (int)($temp / 10);
    }
    return ($sm == $n);
}
 
function printMunchhausenNumbers($n)
{
    global $pwr;
     
    // Precompute i raised to power
    // i for every i
    for ($i = 0; $i < 10; $i++)
        $pwr[$i] = pow((float)($i), (float)($i));
     
    // The input here is fixed i.e. it
    // will check up to n
    for ($i = 1; $i < $n + 1; $i++)
         
        // check the integer for Münchhausen
        // Number, if yes then print out the
        // number
        if (isMunchhausen($i))
            print($i . "\n");
}
 
// Driver Code
$n = 10000;
printMunchhausenNumbers($n);
 
// This code is contributed by mits
?>

Javascript

<script>
 
// Javascript code for Munchhausen Number
// pwr[i] is going to store i raised to
 
// power i.
var pwr;
  
// Function to check out whether
// the number is Munchhausen
// Number or not
function isMunchhausen(n)
{
    var sum = 0;
    var temp = n;
  
    while (temp > 0)
    {
        var index= temp % 10;
        sum =sum + pwr[index];
        temp = parseInt(temp / 10);
    }
    return (sum == n);
}
  
function printMunchhausenNumbers(n)
{
    pwr = Array.from({length: 10}, (_, i) => 0);
 
    // Precompute i raised to
    // power i for every i
    for(var i = 0; i < 10; i++)
        pwr[i] = Math.pow(i, i);
      
    // The input here is fixed i.e. it will
    // check up to n
    for(var i = 1; i <= n; i++)
  
        // check the integer for Munchhausen Number,
        // if yes then print out the number
        if (isMunchhausen(i) == true)
            document.write(i + "<br>");
}
 
// Driver code
var n = 10000;
 
printMunchhausenNumbers(n);
 
// This code is contributed by Princi Singh
 
</script>

Output: 

1
3435

Time complexity: O(n logn) n for outer for loop and log n for  while loop in function isMunchhausen

Auxiliary space: O(1) because it is using constant space for array pow

Note : If the definition 0^0 = 0 is adopted, then there are exactly four Münchhausen numbers: 0, 1, 3435, and 438579088 [Source : MathWorld]
 




Reffered: https://www.geeksforgeeks.org


Mathematical

Related
K-th digit in &#039;a&#039; raised to power &#039;b&#039; K-th digit in &#039;a&#039; raised to power &#039;b&#039;
Check whether given three numbers are adjacent primes Check whether given three numbers are adjacent primes
Sum of square of first n odd numbers Sum of square of first n odd numbers
Sum of square of first n even numbers Sum of square of first n even numbers
Number of terms in Geometric Series with given conditions Number of terms in Geometric Series with given conditions

Type:
Geek
Category:
Coding
Sub Category:
Tutorial
Uploaded by:
Admin
Views:
16