Horje
GridSearchCV XGBoost Code Example
GridSearchCV XGBoost
model = xgb.XGBRegressor()
param_grid = {
    'n_estimators': [400, 700, 1000],
    'colsample_bytree': [0.7, 0.8],
    'max_depth': [15,20,25],
    'reg_alpha': [1.1, 1.2, 1.3],
    'reg_lambda': [1.1, 1.2, 1.3],
    'subsample': [0.7, 0.8, 0.9]
}

model, pred = algorithm_pipeline(X_train, X_test, y_train, y_test, model, 
                                 param_grid, cv=5)

# Root Mean Squared Error
print(np.sqrt(-model.best_score_))
print(model.best_params_)
XGBoost GridSearchCV
import numpy as np
import pandas as pd
from sklearn import preprocessing
import xgboost as xgb
from xgboost.sklearn import XGBRegressor
import datetime
from sklearn.model_selection import GridSearchCV

now = datetime.datetime.now()

# Load the data
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
macro = pd.read_csv('../input/macro.csv')
id_test = test.id
train.sample(3)

y_train_full = train['price_doc']
x_train_full = train.drop(["id", "timestamp", "price_doc"], axis=1)

x_test = test.drop(["id", "timestamp"], axis=1)

# Convert columns that are not numeric to a numeric value
for c in x_train_full.columns:
    if x_train_full[c].dtype == 'object':
        lbl = preprocessing.LabelEncoder()
        lbl.fit(list(x_train_full[c].values))
        x_train_full[c] = lbl.transform(list(x_train_full[c].values))
        # x_train_full.drop(c,axis=1,inplace=True)

for c in x_test.columns:
    if x_test[c].dtype == 'object':
        lbl = preprocessing.LabelEncoder()
        lbl.fit(list(x_test[c].values))
        x_test[c] = lbl.transform(list(x_test[c].values))
        # x_test.drop(c,axis=1,inplace=True)

# Various hyper-parameters to tune
xgb1 = XGBRegressor()
parameters = {'nthread':[4], #when use hyperthread, xgboost may become slower
              'objective':['reg:linear'],
              'learning_rate': [.03, 0.05, .07], #so called `eta` value
              'max_depth': [5, 6, 7],
              'min_child_weight': [4],
              'silent': [1],
              'subsample': [0.7],
              'colsample_bytree': [0.7],
              'n_estimators': [500]}

xgb_grid = GridSearchCV(xgb1,
                        parameters,
                        cv = 2,
                        n_jobs = 5,
                        verbose=True)

xgb_grid.fit(x_train_full,
         y_train_full)

print(xgb_grid.best_score_)
print(xgb_grid.best_params_)




Whatever

Related
formal definition of the derivative Code Example formal definition of the derivative Code Example
resolver step 1 composer prob Code Example resolver step 1 composer prob Code Example
html responsive website Code Example html responsive website Code Example
roblox10003 Code Example roblox10003 Code Example
visual studio code can't see form Code Example visual studio code can't see form Code Example

Type:
Code Example
Category:
Coding
Sub Category:
Code Example
Uploaded by:
Admin
Views:
7