Horje
Splitting Cells and Counting Unique Values in Python List

In data processing, especially when dealing with tabular data, it’s common to encounter cells containing multiple values separated by delimiters like commas or semicolons. Splitting these cells and counting the unique values can provide valuable insights and is a frequent task in data analysis. In this article, we will explore three different methods to achieve this in Python.

How to split a cell and count all the unique values?

Method 1: Using Python’s Built-in Functions

Python’s built-in functions provide a straightforward way to split a cell and count unique values. This method is simple and doesn’t require any additional libraries.

Python
# Sample data
data = ["apple,orange,banana", "banana,apple", "grape,banana,apple", "orange"]

# Split cells and count unique values
unique_values = set()
for cell in data:
    values = cell.split(',')
    unique_values.update(values)

print(f"Unique values: {unique_values}")
print(f"Count of unique values: {len(unique_values)}")

Output
Unique values: {'grape', 'apple', 'orange', 'banana'}
Count of unique values: 4

Method 2: Using pandas

Pandas is a powerful library for data manipulation and analysis. It offers efficient ways to handle large datasets and provides robust tools for splitting cells and counting unique values.

Python
import pandas as pd

# Sample data
data = {
    'fruits': ["apple,orange,banana", "banana,apple", "grape,banana,apple", "orange"]
}

df = pd.DataFrame(data)

# Split cells and count unique values
unique_values = set()
for values in df['fruits'].str.split(','):
    unique_values.update(values)

print(f"Unique values: {unique_values}")
print(f"Count of unique values: {len(unique_values)}")

Output
Unique values: {'banana', 'grape', 'orange', 'apple'}
Count of unique values: 4

Method 3: Using itertools

The itertools module in Python provides a suite of fast, memory-efficient tools for handling iterators. It can be particularly useful for more complex data manipulation tasks.

Python
import itertools

# Sample data
data = ["apple,orange,banana", "banana,apple", "grape,banana,apple", "orange"]

# Split cells and count unique values
split_values = itertools.chain.from_iterable(cell.split(',') for cell in data)
unique_values = set(split_values)

print(f"Unique values: {unique_values}")
print(f"Count of unique values: {len(unique_values)}")

Output
Unique values: {'grape', 'apple', 'orange', 'banana'}
Count of unique values: 4

Conclusion

Splitting cells and counting unique values in Python can be done in multiple ways depending on the complexity of your data and the tools you prefer to use. Python’s built-in functions are great for simple tasks, pandas offers robust data manipulation capabilities, and itertools provides efficient iterator handling for more complex scenarios. Each method has its own advantages, and understanding these can help you choose the best approach for your specific use case.




Reffered: https://www.geeksforgeeks.org


Python

Related
OneToOneField() vs ForeignKey() in Django OneToOneField() vs ForeignKey() in Django
How to Fix "Could Not Import pypandoc - Required to Package PySpark" How to Fix "Could Not Import pypandoc - Required to Package PySpark"
How to Alphabetize a Dictionary in Python How to Alphabetize a Dictionary in Python
How to Add Duplicate Keys in Dictionary Python How to Add Duplicate Keys in Dictionary Python
How Many Rows Can Pandas Dataframe Handle? How Many Rows Can Pandas Dataframe Handle?

Type:
Geek
Category:
Coding
Sub Category:
Tutorial
Uploaded by:
Admin
Views:
19