Horje
Class 12 NCERT Solutions- Mathematics Part ii – Chapter 7– Integrals Exercise 7.7

In the article, we will solve Exercise 7.7 from Chapter 7, “Integrals” in the NCERT. Exercise 7.7 covers some special types of standard integrals which are based on integration by parts

Integral Formulae To Solve Exercise 7.7

[Tex]\int \sqrt{a^2-x^2}dx \space = \frac{x}{2} \sqrt{a^2-x^2} + \frac{a^2}{2}\sin^{-1}(\frac{x}{a})+c[/Tex]…(i)

[Tex]\int \sqrt{x^2+a^2}dx \space = \frac{x}{2} \sqrt{x^2+a^2} + \frac{a^2}{2}\ln|x+\sqrt{x^2+a^2}|+c[/Tex]…(iI)

[Tex]\int \sqrt{x^2-a^2}dx \space = \frac{x}{2} \sqrt{x^2-a^2} – \frac{a^2}{2}\ln|x+\sqrt{x^2-a^2}|+c[/Tex]…(iII)

Exercise 7.7 Solutions

Q.1: [Tex]\int \sqrt{1-4x^2}dx[/Tex]

Solution:

[Tex]\int \sqrt{4-x^2}dx \space = \int \sqrt{2^2-x^2}dx[/Tex]

by putting a = 2 in formula (1), we get

[Tex]=\frac{x}{2} \sqrt{2^2-x^2} + \frac{2^2}{2}\sin^{-1}(\frac{x}{2})+c[/Tex]

[Tex]=\frac{x}{2} \sqrt{4-x^2} + 2\sin^{-1}(\frac{x}{2})+c[/Tex]

Q.2: [Tex]\int \sqrt{1-4x^2}dx[/Tex]

Solution:

[Tex]\int \sqrt{1-4x^2}dx \space = \int \sqrt{1-(2x)^2}dx[/Tex]

by putting [Tex]2x = y, 2dx = dy, dx = \frac{dy}{2}[/Tex]

[Tex]=\frac{1}{2}\int \sqrt{1-y^2}dy[/Tex]

now by using formula (1), we get

[Tex]=\frac{1}{2}[\frac{y}{2} \sqrt{1-y^2} + \frac{1^2}{2}\sin^{-1}(\frac{y}{1})]+c[/Tex]

now we put y = 2x

[Tex]=\frac{1}{2}[\frac{2x}{2} \sqrt{1-(2x)^2} + \frac{1^2}{2}\sin^{-1}(2x)]+c[/Tex]

[Tex]=\frac{x}{2} \sqrt{1-4x^2} + \frac{1}{4}\sin^{-1}(2x)+c[/Tex]

Q.3: [Tex]\int \sqrt{x^2+4x+6}dx[/Tex]

Solution:

[Tex]\int \sqrt{x^2+4x+6}dx \space = \int \sqrt{x^2+4x+2^2+2}dx[/Tex]

[Tex]\int \sqrt{(x+2)^2+(\sqrt2)^2}dx[/Tex]

let (x+2) = y and dx = dy

[Tex]\int \sqrt{y^2+(\sqrt2)^2}dy[/Tex]

using formula (2) , we get

[Tex] = \frac{y}{2} \sqrt{y^2+(\sqrt2)^2} + \frac{ (\sqrt2)^2}{2}\ln|y+\sqrt{y^2+(\sqrt2)^2}|+c[/Tex]

now putting y = (x+2)

[Tex] = \frac{(x+2)}{2} \sqrt{(x+2)^2+(\sqrt2)^2} + \ln|x+2+\sqrt{(x+2)^2+(\sqrt2)^2}|+c[/Tex]

[Tex] = \frac{(x+2)}{2} \sqrt{x^2+4x+6} + \ln|x+2+\sqrt{x^2+4x+6}|+c[/Tex]

Q.4: [Tex]\int \sqrt{x^2+4x+1}dx [/Tex]

Solution:

[Tex]\int \sqrt{x^2+4x+1}dx \space = \int \sqrt{x^2+4x+4-4+1}dx[/Tex]

[Tex]=\int \sqrt{(x+2)^2-(\sqrt3)^2}dx[/Tex]

substitute (x+2) = y and dx = dy

[Tex]= \int \sqrt{y^2-(\sqrt3)^2}dy \space = \frac{y}{2} \sqrt{y^2-(\sqrt3)^2} – \frac{(\sqrt3)^2}{2}\ln|y+\sqrt{y^2-(\sqrt3)^2}|+c[/Tex]

[Tex] = \frac{(x+2)}{2} \sqrt{(x+2)^2-(\sqrt3)^2} – \frac{3}{2}\ln|x+2+\sqrt{(x+2)^2-(\sqrt3)^2}|+c[/Tex]

[Tex] = \frac{(x+2)}{2} \sqrt{x^2+4x+1} – \frac{3}{2}\ln|x+2+\sqrt{x^2+4x+1}|+c[/Tex]

Q.5: [Tex]\int \sqrt{1-4x-x^2}dx [/Tex]

Solution:

[Tex]\int \sqrt{1-4x-x^2}dx \space = \int \sqrt{-(x^2+4x-1)}dx[/Tex]

[Tex] = \int \sqrt{-(x^2+4x+4-4-1)}dx [/Tex]

[Tex] = \int \sqrt{-((x+2)^2-(\sqrt5)^2)}dx \space = \int \sqrt{(\sqrt5)^2-(x+2)^2}dx [/Tex]

now putting (x+2) = y and dx = dy

[Tex]\int \sqrt{(\sqrt5)^2-y^2}dy[/Tex]

using formula (1)

[Tex] = \frac{y}{2} \sqrt{(\sqrt5)^2-y^2} + \frac{(\sqrt5)^2}{2}\sin^{-1}(\frac{y}{\sqrt5})+c[/Tex]

now putting (x+2) =y

[Tex] = \frac{(x+2)}{2} \sqrt{(\sqrt5)^2-(x+2)^2} + \frac{5}{2}\sin^{-1}(\frac{x+2}{\sqrt5})+c[/Tex]

[Tex] = \frac{(x+2)}{2} \sqrt{1-4x-x^2} + \frac{5}{2}\sin^{-1}(\frac{x+2}{\sqrt5})+c[/Tex]

Q.6: [Tex]\int \sqrt{x^2+4x-5}dx [/Tex]

Solution:

[Tex]\int \sqrt{x^2+4x-5}dx \space = \int \sqrt{x^2+4x+4-4-5}dx[/Tex]

[Tex]\int \sqrt{(x+2)^2-3^2}dx [/Tex]

now substitute (x+2) = y and dx = dy

[Tex]\int \sqrt{y^2-3^2}dy \space = \frac{y}{2} \sqrt{y^2-3^2} – \frac{3^2}{2}\ln|y+\sqrt{y^2-3^2}|+c[/Tex]

now put (x+2) = y

[Tex]= \frac{(x+2)}{2} \sqrt{(x+2)^2-3^2} – \frac{9}{2}\ln|x+2+\sqrt{(x+2)^2-3^2}|+c[/Tex]

[Tex]= \frac{(x+2)}{2} \sqrt{x^2+4x-5} – \frac{9}{2}\ln|x+2+\sqrt{x^2+4x-5}|+c[/Tex]

Q.7: [Tex]\int \sqrt{1+3x-x^2}dx [/Tex]

Solution:

[Tex]\int \sqrt{1+3x-x^2}dx \space = \int \sqrt{-(x^2-3x-1)}dx [/Tex]

[Tex]= \int \sqrt{-(x^2-3x+(\frac{3}{2})^2-(\frac{3}{2})^2-1)}dx [/Tex]

[Tex]= \int \sqrt{-((x-\frac{3}{2})^2-(\frac{\sqrt13}{2})^2)}dx [/Tex]

[Tex]= \int \sqrt{(\frac{\sqrt13}{2})^2-(x-\frac{3}{2})^2}dx [/Tex]

now substitute , [Tex](x-\frac{3}{2}) = y[/Tex] and dx = dy

[Tex]= \int \sqrt{(\frac{\sqrt13}{2})^2-y^2}dy [/Tex]

using formula (1), we get

[Tex]= \frac{y}{2} \sqrt{(\frac{\sqrt13}{2})^2-y^2} + \frac{(\frac{\sqrt13}{2})^2}{2}\sin^{-1}(\frac{y}{\frac{\sqrt13}{2}})+c[/Tex]

[Tex]= \frac{(x-\frac{3}{2})}{2} \sqrt{(\frac{\sqrt13}{2})^2-(x-\frac{3}{2})^2} + \frac{13}{8}\sin^{-1}(\frac{(x-\frac{3}{2})}{\frac{\sqrt13}{2}})+c[/Tex]

[Tex]= \frac{(2x-3)}{4} \sqrt{1+3x-x^2} + \frac{13}{8}\sin^{-1}(\frac{2x-3}{\sqrt13})+c[/Tex]

Q.8: [Tex]\int \sqrt{x^2+3x}dx [/Tex]

Solution:

[Tex]= \int \sqrt{x^2+3x+(\frac{3}{2})^2 – (\frac{3}{2})^2}dx [/Tex]

[Tex]= \int \sqrt{(x+\frac{3}{2})^2 – (\frac{3}{2})^2}dx [/Tex]

now substitute [Tex](x+\frac{3}{2}) = y [/Tex]and dx = dy

[Tex]= \int \sqrt{y^2 – (\frac{3}{2})^2}dy [/Tex]

using formula (3) , we get

[Tex] = \frac{y}{2} \sqrt{y^2-(\frac{3}{2})^2} – \frac{(\frac{3}{2})^2}{2}\ln|y+\sqrt{y^2-(\frac{3}{2})^2}|+c[/Tex]

[Tex] = \frac{(x+\frac{3}{2})}{2} \sqrt{(x+\frac{3}{2})^2-(\frac{3}{2})^2} – \frac{9}{2}\ln|x+\frac{3}{2}+\sqrt{(x+\frac{3}{2})^2-(\frac{3}{2})^2}|+c[/Tex]

[Tex] = \frac{(2x+3)}{4} \sqrt{x^2+3x} – \frac{9}{8}\ln|x+\frac{3}{2}+\sqrt{x^2+3x}|+c[/Tex]

Q.9: [Tex]\int \sqrt{1+(\frac{x^2}{9})}dx [/Tex]

Solution:

[Tex]\int \sqrt{1+(\frac{x^2}{9})}dx = \frac{1}{3}\int \sqrt{x^2+3^2)}dx [/Tex]

by using formula (2)

[Tex]\frac{1}{3}\int \sqrt{x^2+3^2}dx \space = \frac{1}{3}[\frac{x}{2} \sqrt{x^2+3^2} + \frac{3^2}{2}\ln|x+\sqrt{x^2+3^2}|]+c[/Tex]

[Tex] = \frac{x}{6} \sqrt{x^2+9} + \frac{3}{2}\ln|x+\sqrt{x^2+9}|+c[/Tex]

Q.10: [Tex]\int \sqrt{1+x^2}dx[/Tex]

(A) x/2√(1 + x2) + 1/2log|x + √(1 + x2) + C|

(B) 2/3(1 + x2)3/2 + C

(C) 2/3x√(1 + x2)3/2 + C

(D) x2/2√(1 + x2) + 1/2.x2.log|x + √(1 + x2) + C|

Solution:

Option (A) is Correct

Using formula (2) we get

[Tex]\int \sqrt{x^2+1^2}dx \space = \frac{x}{2} \sqrt{x^2+1^2} + \frac{1^2}{2}\ln|x+\sqrt{x^2+1^2}|+c[/Tex]

[Tex] = \frac{x}{2} \sqrt{x^2+1} + \frac{1}{2}\ln|x+\sqrt{x^2+1}|+c[/Tex]

Q.11: [Tex]\int \sqrt{x^2-8x+7}dx [/Tex]

(A) 1/2(x – 4)√(x2 – 8x + 7) + 9.log|x – 4 + √(x2 -8x + 7)| + C

(B) 1/2(x – 4)√(x2 – 8x + 7) + 9.log|x + 4 + √(x2 -8x + 7)| + C

(C) 1/2(x – 4)√(x2 – 8x + 7) – 3√(2).log|x – 4 + √(x2 -8x + 7)| + C

(D) 1/2(x – 4)√(x2 – 8x + 7) – 9/2.log|x – 4 + √(x2 -8x + 7)| + C

Solution:

Option (D) is Correct

[Tex]\int \sqrt{x^2-8x+7}dx \space = \int \sqrt{x^2-8x+4^2-4^2+7}dx [/Tex]

[Tex] = \int \sqrt{(x-4)^2-3^2}dx [/Tex]

let (x-4) = y and dx = dy

[Tex]\int\sqrt{y^2-3^2}dy[/Tex]

using formula (3)

[Tex]\int \sqrt{y^2-3^2}dy \space = \frac{y}{2} \sqrt{y^2-3^2} – \frac{3^2}{2}\ln|y+\sqrt{y^2-3^2}|+c[/Tex]

Now put y = (x-4) and after simplifying

[Tex] = \frac{(x-4)}{2} \sqrt{x^2-8x+7} – \frac{9}{2}\ln|x-4+\sqrt{x^2-8x+7}|+c[/Tex]




Reffered: https://www.geeksforgeeks.org


Class 12

Related
Class 12 NCERT Solutions- Mathematics Part ii – Chapter 7– Integrals Exercise 7.5 Class 12 NCERT Solutions- Mathematics Part ii – Chapter 7– Integrals Exercise 7.5
Class 12 NCERT Solutions – Mathematics Part ii – Chapter 8 – Application of Integrals Miscellaneous Exercise Class 12 NCERT Solutions – Mathematics Part ii – Chapter 8 – Application of Integrals Miscellaneous Exercise
Class 12 NCERT Solutions- Mathematics Part ii – Chapter 9– Differential Equations Exercise 9.1 Class 12 NCERT Solutions- Mathematics Part ii – Chapter 9– Differential Equations Exercise 9.1
Class 12 NCERT Solutions- Mathematics Part II – Chapter 11 – Three Dimensional Geometry Exercise 11.1 Class 12 NCERT Solutions- Mathematics Part II – Chapter 11 – Three Dimensional Geometry Exercise 11.1
Friedel–Crafts Reactions - Alkylation, Acylation, Mechanism and Uses Friedel–Crafts Reactions - Alkylation, Acylation, Mechanism and Uses

Type:
Geek
Category:
Coding
Sub Category:
Tutorial
Uploaded by:
Admin
Views:
15