Horje
Class 12 NCERT Solutions- Mathematics Part ii – Chapter 7– Integrals Exercise 7.6

Integrate the functions in Exercises 1 to 22.

Question 1: x sinx.

Solution:

Let f(X) = ∫ x sinx dx

Taking x as first function and sin x as second function and integrating by parts, we obtain

f(x) = x ∫sin x dx – {(d(x)/dx) ∫sin x dx} dx

⇒ f(x) = x(-cosx)-∫1. (-cosx)dx

⇒ f(x) = x cosx + sinx + C

Question 2: x sin3x

Solution:

Let f(x) = ∫x sin3x dx

Taking x as the first function and sin 3x as the second function and integrating by parts, we obtain

f(x) = x ∫sin3x dx – {(d(x)/dx) ∫sin3x dx} dx

⇒ f(x) = x (-cos3x ∕ 3) – ∫1. (cos3x ∕ 3) dx

⇒ f(x) = -x cos3x∕ 3 + 1∕3 ∫cos3x dx

⇒ f(x) = -xcos3x∕3 + 1∕9 sin3x + C

Question 3: x2 ex

Solution:

Let f(x) = ∫x2 ex dx

Taking x2 as first function and ex as second function and integrating by parts, we obtain

f(x) = x2 ∫ex dx – {(d(x2)/dx) ∫ex dx} dx

⇒ f(x) = x2 ex– ∫2x.ex dx

⇒ f(x) = x2ex – 2 ∫x.ex dx

Again, integrating by parts, we obtain

f(x) = x2ex -2[x.∫exdx-∫{(d(x)/dx). ∫exdx}dx]

⇒ f(x) = x2ex -2[xex – ∫exdx]

⇒ f(x) = x2ex-2[xex – ex]

⇒ f(x) = x2ex -2xex + 2ex + C

⇒ f(x) = ex (x2-2x+2) + C

Question 4: x logx

Solution:

Let f(x) = ∫x log x dx

Taking log x as first function and x as second function and integrating by parts, we obtain

f(x) = log x ∫x dx – {(d(log x)/dx) ∫x dx} dx

⇒ f(x) = log x. (x2 ∕ 2) – ∫1∕x. (x2 ∕2) dx

⇒ f(x) = x2logx∕2 – ∫x∕2 dx

⇒ f(x) = x2logx∕2 – x2∕4 + C

Question 5: x log2x

Solution:

Let f(x) = ∫x log 2x dx

Taking log 2x as first function and x as second function and integrating by parts, we obtain

f(x) = log 2x ∫x dx – {(d (log 2x)∕dx) ∫x dx} dx

⇒ f(x) = log 2x. (x2 ∕ 2) – ∫2∕2x. (x2 ∕2) dx

⇒ f(x) = x2log2x∕2 – ∫x∕2 dx

⇒ f(x) = x2log2x∕2 – x2∕4 + C

Question 6: x2 logx

Solution:

Let f(x) = ∫x2 log x dx

Taking log x as first function and x2 as second function and integrating by parts, we obtain

f(x) = log x ∫x2 dx – {(d (log x) ∕dx) ∫x2 dx} dx

⇒ f(x) = log x. (x3 ∕ 3) – ∫1∕x. (x3 ∕3) dx

⇒ f(x) = x3logx∕3 – ∫x3∕ 3 dx

⇒ f(x) = x3logx∕3 – x3 ∕ 9 + C

Question 7: x sin-1x.

Solution:

Let f(x) = ∫x sin-1x dx

Taking sin-1x as first function and x as second function and integrating by parts, we obtain

f(x) = sin-1x ∫ x dx – ∫ {(d(sin-1x∕dx) ∫x dx} dx

⇒ f(x) = sin-1x (x2/2) – ∫ 1∕ √(1-x2 ).x2∕2 dx

⇒ f(x) = x2sin-1x ∕2 + 1∕2 ∫-x ∕ √(1-x2 ) dx

⇒ f(x) = x2 sin-1x∕2 + 1∕2 ∫ {1-x2 ∕ √(1-x2 )- 1∕√(1-x2)} dx

⇒ f(x) = x2 sin-1x∕2 + 1∕2 ∫ {√1-x2 – 1∕√(1-x2)} dx

⇒ f(x) = x2 sin-1x∕2 + 1∕2 {∫ √1-x2 dx – 1 ∕√(1-x2) dx}

⇒ f(x) = x2sin-1x∕2 + 1∕2{x∕2. √1-x2 + 1∕2sin-1x – sin-1x} +C

⇒ f(x) = x2sin-1x∕2 + x∕4. √1-x2 + 1∕4sin-1x – 1∕2sin-1x +C

⇒ f(x) = 1∕4(2x2-1) sin-1x + x∕4. √1-x2 + C

Question 8: x tan-1x

Solution:

Let f(x) = ∫ x tan-1x dx

Taking tan-1x as first function and x as second function and integrating by parts, we obtain

f(x) = tan-1x ∫ x dx – ∫ {(d(tan-1x∕dx) ∫x dx} dx

⇒ f(x) = tan-1x (x2∕2) – ∫ 1∕ (1+x). x2∕2 dx

⇒ f(x) = x2 tan-1x ∕ 2 – 1∕2∫ 1∕ (1+x2 ) dx

⇒ f(x) = x2 tan-1x ∕ 2 – 1∕2∫{(x2+1) ∕ (1+x2) – 1∕ (1+x2)} dx

⇒ f(x) = x2 tan-1x ∕ 2 – 1∕2∫ (1- 1∕ (1+x2) dx

⇒ f(x) = x2 tan-1x ∕ 2 – 1∕2 (x-tan-1 x) + C

⇒ f(x) = x2 tan-1x ∕ 2 – x∕2 + 1∕2 tan-1x + C

Question 9: x cos-1x

Solution:

Let f(x) = ∫x cos-1x dx

Taking cos-1x as first function and x as second function and integrating by parts, we obtain

f(x) = cos-1x ∫ x dx – ∫ {(d(cos-1x)∕dx.∫x dx} dx

⇒ f(x) = cos-1x (x2/2) – ∫ -1∕ √1-x2 .x2∕2 dx

⇒ f(x) = x2 cos-1x ∕2 – 1∕2 ∫1-x2-1 ∕ √(1-x2 ) dx

⇒ f(x) = x2 cos-1x∕2 – 1∕2 ∫ {√(1-x2 ) +( -1∕√1-x2)} dx

⇒ f(x) = x2 cos-1x∕2 – 1∕2 ∫ √1-x2 dx – 1∕2 ∫(-1∕√1-x2) dx

⇒ f(x) = x2 cos-1x∕2 – 1∕2 I1 – 1∕2 cos-1x ————-(1)

Where I1 = ∫√1-x2 dx

I1 = x√1-x2 – ∫d(√1-x2)∕dx ∫x dx

⇒ I1 = x√1-x2 – ∫d(-2x∕2√1-x2 .x dx

⇒ I1 = x√1-x2 – ∫-x2∕√1-x2 dx

⇒ I1 = x√1-x2 – ∫1-x2-1 ∕ √(1-x2) dx

⇒ I1 = x√1-x2 – { ∫ √1-x2 dx + ∫(-dx∕√1-x2}

⇒ I1 = x√1-x2– {I1 + cos-1x}

⇒ 2I1 = x√1-x2 – cos-1x

⇒ I1 = x∕2 .√1-x2 -1∕2 cos-1x

Substituting in (1), we obtain

f(x) = x2cos-1x∕2 – 1∕2 (x∕2 .√1-x2 -1∕2 cos-1x) – 1∕2 cos-1x

⇒ f(x) = (2x-1)∕4 cos-1x – x∕4 √1-x2 + C

Question 10: (sin-1x)2

Solution:

Let f(x) = ∫(sin-1x)2 dx

Taking (sin-1x)2as first function and 1 as second function and integrating by parts, we obtain

f(x) = (sin-1x)2∫ 1dx – ∫ {(d(sin-1x)2∕dx. ∫1 dx} dx

⇒ f(x) = (sin-1x). x – ∫ 2.sin-1x∕√1-x2 . x dx

⇒ f(x) = x(sin-1x) 2 + ∫sin-1x.(-2x∕ √1-x2)dx

⇒ f(x) = x(sin-1x) 2+[sin-1x∫-2x∕√1-x2 dx – ∫ {❴d(sin-1x)∕dx❵∫-2x ∕√1-x2 dx}dx]

⇒ f(x) =x(sin-1x) 2+[ sin-1x .2√1-x2 – ∫1∕√1-x2 .2√1-x2 dx ]

⇒ f(x) =x(sin-1x)2+ 2√1-x2 sin-1x – ∫2dx

⇒ f(x) =x(sin-1x)2+ 2√1-x2 .sin-1x -2x + C

Question 11: (x cos-1x) / √1-x2

Solution:

Let f(x) = ∫(x cos-1x) / √1-x2 dx

we are multiplying -1/2 in numerator and dementor then.

f(x) = -1∕2 ∫(-2x cos-1x) ∕√1-x2 dx

Taking (cos-1x) as first function and {-2x∕√1-x2 ❵ as second function and integrating by parts, we obtain

f(x) = -1∕2 [ cos-1x∫-2x∕√1-x dx – ∫ {❲d(cos-1x)∕dx❳∫-2x√1-x2 dx}dx]

⇒ f(x) = -1∕2 [cos-1x.2√1-x2 – ∫-1∕√1-x2 2√1-x2 dx]

⇒ f(x) = -1∕2 [2√1-x2 cos-1x+ ∫2 dx]

⇒ f(x) = -1∕2 [2√1-x2 cos-1x+ 2x] + C

⇒ f(x) = – [√1-x2 cos-1x+ x] + C

Question 12: x sec2x

Solution:

Let f(x) = ∫x sec2x dx

Taking x as first function and sec2x as second function and integrating by parts, we obtain

f(x) = x ∫sec2x dx – {(d (x) ∕dx) ∫sec2x dx} dx

⇒ f(x) = xtanx – ∫1.tanx dx

⇒ f(x) = x tanx + log|cosx| + C

Question 13: tan-1x

Solution:

Let f(x) = ∫tan-1x dx

Taking tan-1x as first function and 1 as second function and integrating by parts, we obtain

f(x) = tan-1x∫1dx – ∫ {[d❲tan-1x❳∕dx] ∫1. dx}dx

⇒ f(x) = tan-1x .x – ∫1∕1+x2 .x dx

⇒ f(x) = x tan-1x – 1∕2 ∫2x∕1+x2 dx

⇒ f(x) = x tan-1x – 1∕2 log|1+x2| +C

⇒ f(x) = x tan-1x -1∕2 log(1+x2) + C

Question 14: x (logx)2

Solution:

Let f(x) = ∫ x (logx)2 dx

Taking (logx)2 as first function and x as second function and integrating by parts, we obtain

f(x) = (logx)2 ∫x dx – ∫[{{d(logx)∕dx}2}∫xdx]dx

⇒ f(x) = x∕2 (logx)2 – [∫2logx 1∕x . x2∕2 dx]

⇒ f(x) = x2∕2 (logx)2 – ∫x logx dx

Again, integration by parts, we obtain.

f(x) = x2∕2 ❲logx❳2 – [logx ∫x dx – ∫{❴d(logx)∕dx}∫xdx❵dx]

⇒ f(x) = x2∕2 ❲logx❳2 – [x2∕2 – logx – ∫1∕x .x2∕2 dx]

⇒ f(x) = x2∕2 ❲logx❳2 – x2∕2 .logx + 1∕2∫xdx

⇒ f(x) = x2∕2 ❲logx❳2 – x2∕2 .logx + x2∕4 + C

Question 15: (x2+1) logx

Solution:

Let f(x) = ∫ (x2+1) logx dx

⇒ f(x) = ∫ x2 logx dx + ∫ logx dx

Let f(x) = I1 + I2 ……………………….. (1)

where I1 = ∫ x2 logx dx and I2 = ∫ logx dx

I1 = ∫ x2 logx dx

Taking (logx) as first function and x2 as second function and integrating by parts, we obtain

⇒ I1 = logx – ∫ x2dx – ∫{❴d(logx)∕dx❵∫x2dx} dx

⇒ I1 = logx .x3∕3 – ∫1∕x . x3∕3 dx

⇒ I1 = x3∕3 logx – 1∕3(∫x dx)

⇒ I1 = x3∕3 logx – x3∕9 + C1 …………………… (2)

I2 = ∫ logx dx

Taking log x as first function and 1 as second function and integrating by parts, we obtain

f(x) = log x ∫1 dx – {(d(log x)/dx) ∫1 dx} dx

⇒ f(x)= log x.x – ∫1∕x. x dx

⇒ f(x) = x. logx∕2 – ∫1 dx

⇒ f(x) = x. logx∕2 – x + C2 ………………….(3)

Using equation (2) and (3) in (1), we obtain

f(x) = x3∕3 logx – x3∕9 + C1 + x. logx∕2 – x + C2

⇒ f(x)= x3∕3 logx – x3∕9 + x. logx∕2 – x + C 1+ C2

⇒ f(x)= (x3∕3 + x) logx – x3∕9 – x + C

Question 16: ex(sinx + cosx)

Solution:

Let f(x) = ∫ e(sinx+cosx) dx

Let g(x) = sinx

g(x) = cosx

f(x) = ∫ ex{g(x) + g(x) } dx

It is known that, ∫ ex{ g(x) + g'(x) } dx = ex g(x) + C

So, f(x) = ex sinx + C

Question 17: x ex ∕(1+x)2

Solution:

Let f(x) = ∫ x ex ∕(1+x)2 dx

⇒ f(x)= ∫ ex{x ∕(1+x)2} dx

⇒ f(x)= ∫ ex{(1+x-1) ∕ (1+x)2} dx

⇒ f(x)= ∫ e {1∕ (1+x) – 1∕ (1+x)2} dx

Let f(x) = 1∕ (1+x)

f(x) = -1∕ (1+x)2

⇒ f(x) = ∫ x ex ∕(1+x)2 dx = ∫ ex{f(x) + f'(x) }dx

It is known that ∫ ex{f(x) + f'(x) }dx = ex f(x) + C

So, ∫ x ex ∕(1+x)2 dx = ex ∕ (1+x) C

Question 18: ex{(1+sinx) ∕ (1+cosx)}

Solution:

Let I = ex{(1+sinx)∕(1+cosx)}

⇒ I =ex{(sin2x∕2+cos2x∕2+2 sinx∕2 cosx∕2) ∕ (2cos2x∕2)}

⇒ I = ex{(sinx∕2+cosx∕2)2 ∕ (2cos2x∕2)}

⇒ I = 1∕2 ex{(sinx∕2+cosx∕2) ∕ (cosx∕2)}2

⇒ I = 1∕2 ex {tanx∕2 + 1}2

⇒ I = 1∕2 ex{1 + tan2x∕2 + 2tanx∕2}

⇒ I = 1∕2 ex{secx∕2 + 2tanx∕2}

⇒ I = ex(1+sinx)dx ∕ (1+cosx) = ex{1∕2 sec2x∕2 + tanx∕2} —————– (1)

Let tanx∕2 = f(x) or f'(x) = 1∕2 sec2x∕2

It is known that ∫ ex{f(x) + f'(x) } dx = ex f(x) + C

from equation (1), we obtain,

∫ex{(1+sinx)∕(1+cosx)}dx = ex tanx∕2 + C

Question 19: ex{1∕x – 1∕x2}

Solution:

Let f(x) = ∫ex{1∕x – 1∕x2} dx

Also Let 1∕x = f(x) or f'(x) = – 1∕x2

It is known that ∫ ex{f(x) + f'(x) } dx = ex f(x) + C

So, f(x) = ex ∕ x + C

Question 20: (x-3) ex ∕ (x-1)3

Solution:

Let f(x) = ∫ ex{ (x-3) ∕ (x-1)3}dx

⇒ f(x) = ∫ ex{ (x-1-2) ∕ (x-1)3}dx

⇒ f(x) = ∫ ex{ 1∕ (x-1)2 – 2 ∕ (x-1)3}dx

⇒ f(x) = 1 ∕ (x-1)2 or f'(x) = -2 ∕ (x-1)3

It is known that ∫ ex{f(x) + f'(x) } dx = ex f(x) + C

So, ∫ ex{ (x-3) ∕ (x-1)3}dx = ex ∕ {x-1}2 + C

Question 21: e2x sinx

Solution:

Let f(x) = ∫ e2x sinx dx ————– (1)

Integrating by parts, we obtain

f(x) = sinx ∫ e2x dx – ∫ { ❴ d(sinx)∕dx❵ ∫ e2x dx} dx

⇒ f(x) = sinx . e2x∕2 – ∫ cosx e2x∕2 dx

⇒ f(x) = 1∕2 e2x sinx – 1∕2 ∫ e2x cosx dx

Again, Integrating by parts, we obtain

f(x) = 1∕2 e2x sinx – 1∕2 [cosx ∫ e2x dx – ∫ {❴d∕dx cosx❵∫e2x dx} dx]

⇒ f(x) = 1∕2 e2x sinx – 1∕2 [cosx e2x ∕ 2 – ∫ ❴-sinx❵ e2x ∕2 dx

⇒ f(x) = 1∕2 e2x sinx – 1∕2 [(cosx e2x ) ∕ 2 + ∫ sinx e2x ∕2 dx

⇒ f(x) = 1∕2 e2x sinx – (e2x cosx) ∕ 4 – 1∕4f(x) ———-from (1)

⇒ f(x) + 1∕4f(x) = 1∕2 e2x sinx – (e2x cosx) ∕ 4

⇒ 5/4 f(x) = (e2x sinx)1∕2 – (e2x cosx) ∕ 4

⇒ f(x) = e2x ∕5 [ 2 sinx – cosx] + C

Question 22: sin-1(2x∕(1+x2)

Solution:

sin-1(2x∕(1+x2)

Let x = tanθ or dx = sec2θ dθ

So, sin-1(2x∕(1+x2) = sin-1(2 tanθ∕(1+tan2θ) = sin-1(sin2θ) = 2θ

Integrating by parts, we obtain

2[θ.∫sec2θ dθ – ∫{❴dθ∕ dθ❵sec2θ dθ} dθ]

= 2[θ.tanθ – ∫tanθ dθ]

= 2[θ.tanθ – log|cosθ|] + C

= 2[x.tan-1x – log|1√(1+x2|] + C

= 2xtan-1x + 2 log(1+x2)1∕2 + C

= 2x tan-1x + 2 [-1∕2 log(1+x2) ] + C

= 2x tan-1x – log(1+x2) + C

Choose the correct answer in Exercises 23 and 24.

Question 23: ∫ x2ex^3 dx equals

(A) 1∕3 .eX^3 + C

(B) 1∕3 . eX^3 + C

(C) 1∕2 .eX^3 + C

(D) 1∕3 . eX^3 + C

Correct answer is A.

Question 24 :∫ ex secx(1+tanx) dx equals.

(A) ex cosx + C

(B) ex secx + C

(C) ex sinx + C

(D) ex tanx + C

Correct answer is (B) ex secx + C.




Reffered: https://www.geeksforgeeks.org


Mathematics

Related
Class 12 NCERT Solutions- Mathematics Part ii – Chapter 9– Differential Equations Exercise 9.2 Class 12 NCERT Solutions- Mathematics Part ii – Chapter 9– Differential Equations Exercise 9.2
Subtraction of Decimal Subtraction of Decimal
Real-World Examples of Exponential Decay Real-World Examples of Exponential Decay
Application of Math in Electrical Engineering Application of Math in Electrical Engineering
Real Life Application of Math in Mechanical Engineering Real Life Application of Math in Mechanical Engineering

Type:
Geek
Category:
Coding
Sub Category:
Tutorial
Uploaded by:
Admin
Views:
14