Horje
Program to find the Eccentricity of a Hyperbola

Given two integers A and B, representing the length of the semi-major and semi-minor axis of a Hyperbola of the equation (X2 / A2) – (Y2 / B2) = 1, the task is to calculate the eccentricity of the given hyperbola.

Examples:

Input: A = 3, B = 2
Output: 1.20185
Explanation:
The eccentricity of the given hyperbola is 1.20185.

Input: A = 6, B = 3
Output: 1.11803

Approach: The given problem can be solved by using the formula to find the eccentricity of an ellipse.

  • The length of the semi-major axis is A.
  • The length of the semi-minor axis is B.
  • Therefore, the eccentricity of the ellipse is given by \sqrt(1 + \frac{B^2}{A^2})           where A > B

Therefore, the idea is to print the value of \sqrt(1 + \frac{B^2}{A^2})           as the eccentricity of the ellipse.

Below is the implementation of the above approach:

C++

// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the eccentricity
// of a hyperbola
double eccHyperbola(double A, double B)
{
    // Stores the squared ratio
    // of major axis to minor axis
    double r = (double)B * B / A * A;
 
    // Increment r by 1
    r += 1;
 
    // Return the square root of r
    return sqrt(r);
}
 
// Driver Code
int main()
{
    double A = 3.0, B = 2.0;
    cout << eccHyperbola(A, B);
 
    return 0;
}

Java

// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to find the eccentricity
// of a hyperbola
static double eccHyperbola(double A, double B)
{
     
    // Stores the squared ratio
    // of major axis to minor axis
    double r = (double)B * B / A * A;
 
    // Increment r by 1
    r += 1;
 
    // Return the square root of r
    return Math.sqrt(r);
}
 
// Driver Code
public static void main(String[] args)
{
    double A = 3.0, B = 2.0;
     
    System.out.print(eccHyperbola(A, B));
}
}
 
// This code is contributed by Amit Katiyar

Python3

# Python3 program for the above approach
import math
 
# Function to find the eccentricity
# of a hyperbola
 
 
def eccHyperbola(A, B):
 
    # Stores the squared ratio
    # of major axis to minor axis
    r = B * B / A * A
 
    # Increment r by 1
    r += 1
 
    # Return the square root of r
    return math.sqrt(r)
 
 
# Driver Code
if __name__ == "__main__":
 
    A = 3.0
    B = 2.0
    print(eccHyperbola(A, B))
 
    # This code is contributed by ukasp

C#

// C# program for the above approach
using System;
 
class GFG{
 
// Function to find the eccentricity
// of a hyperbola
static double eccHyperbola(double A, double B)
{
     
    // Stores the squared ratio
    // of major axis to minor axis
    double r = (double)B * B / A * A;
 
    // Increment r by 1
    r += 1;
 
    // Return the square root of r
    return Math.Sqrt(r);
}
 
// Driver Code
public static void Main(String[] args)
{
    double A = 3.0, B = 2.0;
     
    Console.Write(eccHyperbola(A, B));
}
}
 
// This code is contributed by Princi Singh

Javascript

<script>
 
// Javascript program for the above approach
 
// Function to find the eccentricity
// of a hyperbola
function eccHyperbola(A, B)
{
     
    // Stores the squared ratio
    // of major axis to minor axis
    let r = B * B / A * A;
 
    // Increment r by 1
    r += 1;
 
    // Return the square root of r
    return Math.sqrt(r);
}
 
// Driver Code
let A = 3.0;
let B = 2.0;
 
document.write(eccHyperbola(A, B));
 
// This code is contributed by mohit kumar
 
</script>

Output: 
2.23607

 

Time Complexity: O(1)
Auxiliary Space: O(1)




Reffered: https://www.geeksforgeeks.org


Geometric

Related
Angle between a Pair of Lines Angle between a Pair of Lines
Maximum the value of a given expression for any pair of coordinates on a 2D plane Maximum the value of a given expression for any pair of coordinates on a 2D plane
Check if a point is inside, outside or on a Hyperbola Check if a point is inside, outside or on a Hyperbola
Minimum area of the triangle formed by any tangent to an ellipse with the coordinate axes Minimum area of the triangle formed by any tangent to an ellipse with the coordinate axes
Maximize count of intersecting line segments Maximize count of intersecting line segments

Type:
Geek
Category:
Coding
Sub Category:
Tutorial
Uploaded by:
Admin
Views:
11